SERRI Report 70015-002

2008 Geotextile Tubes Workshop

SERRI Project: Increasing Community Disaster Resilience Through Targeted Strengthening of Critical Infrastructure

Project Principal Investigator: Isaac L. Howard, PhD

Report Written and Performed By:
Isaac L. Howard - Mississippi State University
Miriam E. Smith - Mississippi State University
Chris L. Saucier - Mississippi State University
Thomas D. White - Mississippi State University
This material is based upon work supported by the U.S. Department of Homeland Security under U.S. Department of Energy Interagency Agreement 43WT10301. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security.
SERRI Project: Increasing Community Disaster Resilience
Through Targeted Strengthening of Critical Infrastructure

2008 GEOTEXTILE TUBES WORKSHOP

Written By:
Isaac L. Howard, PhD - Mississippi State University
Miriam E. Smith, PhD, PE - Mississippi State University
Chris L. Saucier, PhD, PE - Mississippi State University
Thomas D. White, PhD, PE - Mississippi State University

Date Published:
October 2009

Prepared for
U.S. Department of Homeland Security
Under U.S. Department of Energy Interagency Agreement 43WT10301

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6283
managed by
UT-BATTELLE, LLC
for the
U.S DEPARTMENT OF ENERGY
under contract DE-AC05-00OR22725
Technical Report Documentation Page

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Report No.</td>
<td>SERRI Report 70015-002</td>
</tr>
<tr>
<td>2.</td>
<td>Government Accession No.</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Recipient’s Catalog No.</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Title and Subtitle</td>
<td>2008 Geotextile Tubes Workshop</td>
</tr>
<tr>
<td>5.</td>
<td>Report Date</td>
<td>October 12, 2009</td>
</tr>
<tr>
<td>6.</td>
<td>Performing Organization Code</td>
<td></td>
</tr>
</tbody>
</table>
| 7. | Author(s) | Isaac L. Howard, PhD, Assistant Professor, Mississippi State University
Miriam Smith, PhD, PE, Research Assistant Professor, Miss. State Univ.
Chris L. Saucier, PhD, PE, Assistant Professor, Mississippi State University
Thomas D. White, PhD, PE, Professor, Mississippi State University |
| 8. | Performing Organization Report No. | CMRC 09-3 |
| 9. | Performing Organizations Name and Address | Mississippi State University
Civil and Environmental Engineering Dept.
501 Hardy Road: P O Box 9546
Mississippi State, MS 39762 |
| 10. | Work Unit No. (TRAIS) | |
| 11. | Contract or Grant No. | |
| 12. | Sponsoring Agencies Names and Addresses | US Army Corps of Engineers
Research and Development Ctr
Coastal & Hydraulics Lab
Vicksburg, MS 39180-6199
Mississippi State University
Civil and Environmental Engineering Dept. and
Office of Research and Economic Development
501 Hardy Road: P O Box 9546
Mississippi State, MS 39762 |
| 13. | Type of Report and Period Covered | Final Report
January 2008 to April 2009 |

Supplementary Notes: Work was performed for Mississippi State University research project titled: *Increasing Community Disaster Resilience Through Targeted Strengthening of Critical Infrastructure*. The project number assigned to the work by the sponsor was 70015. The US Department of Homeland Security (DHS) funded the Southeast Regional Research Initiative (SERRI), which provided the support of the overall research effort. This report is Volume II in a series of reports performed as part of this research effort. Work related to Volume II was also funded by the US Army Corps of Engineers and Mississippi State University.

Abstract

The objective of this report was to disseminate information from the *2008 Geotextile Tubes Workshop* held at Mississippi State University. A group of experts were invited to present past and present work in which they were/are involved related to the use of geotextile tubes. The participants were also asked to participate in two panel discussions led by a member of the research team. One panel discussion pertained to the use of geotextile tubes for construction of walls in a flooded area while the other dealt with rapidly dewatering fine grained soil with geotextile tubes. This report contains summary information written by the Mississippi State University research team and the full presentations made by the invited participants.

Key Words

Flooding, Disaster Recovery, Geotextile Tubes, Dewatering, Walls, Workshop

Distribution Statement

TBD

Security Classif. (of this report)

TBD

Security Classif. (of this page)

TBD

No. of Pages

367

Price

Reproduction of completed page authorized
TABLE OF CONTENTS

ACKNOWLEDGEMENTS .. vi

1.0 INTRODUCTION .. 1

2.0 DESCRIPTION OF GEOTEXTILE TUBES ... 3

3.0 CONFERENCE PRESENTATIONS SUMMARIES ... 4

 3.1 Analysis and Design .. 4
 3.2 Structural Applications .. 6
 3.3 Dewatering .. 8
 3.4 QA and QC of Geosynthetics and Geotextile Tubes ... 10
 3.5 Case Histories ... 10

4.0 PANEL DISCUSSIONS .. 13

 4.1 Panel Discussion: Structural Applications .. 13
 4.2 Panel Discussion: Dewatering Applications ... 17

5.0 SUMMARY OF WORKSHOP FINDINGS ... 17

 5.1 Summary of Findings for Structural Applications .. 19
 5.2 Summary of Findings for Dewatering Applications ... 21

6.0 PRESENTATIONS GIVEN BY INVITED PARTICIPANTS ... 22

 6.1 Geotextile Tubes Workshop: Statement of Workshop Goals .. 23
 (Isaac L. Howard, PhD)
 6.2 Laboratory Study on the Role of Polymers in Rapid Dewatering .. 33
 (Shobha K. Bhatia, PhD)
 6.3 Mainstreaming Geotextile Tube Implementation .. 55
 (Barry R. Christopher, PhD, PE)
 6.4 Geotextile Tubes, Design, Applications and Case Histories .. 68
 (Jack Fowler, PhD, PE)
 6.5 Stability of Geotubes and Research Needs .. 142
 (Mohammed A. Gabr, PhD)
6.6 Use of Poor Quality Geo-Material in Geotextile Tubes for Structural Applications (Douglas A. Gaffney, PE)
6.7 Chemical Treatment of Dredged Soils (Dewey W. Hunter)
6.8 Specification and Testing of Geotextile Tubes (George R. Koerner, PhD, CQA)
6.9 Analysis and Design of Geotextile Tubes (Dov Leshchinsky, PhD)
6.10 Installation and Performance of Geotextile Tubes (Nate Lovelace)
6.11 HSARPA-SERRI Water-Filled Technologies for Rapid Repair of Levee Breaches (Don Resio, PhD)
6.12 Geotubes for Structural Applications (Ed Trainer)
6.13 Geotubes for Dewatering Applications (Ed Trainer)
6.14 Disposal of Coal Mine Slurry Using Geosynthetic Containers at North River Mine in Berry, Alabama (Ed Trainer)
ACKNOWLEDGEMENTS

The authors wish to thank everyone who was involved with the 2008 Geotextile Tubes Workshop. Partial funding for the workshop was provided by the US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory due to the efforts of Dr. Donald T. Resio. Partial funding for the workshop was also provided by Mississippi State University’s Office of Research and Economic Development due to the efforts of Dr. Kirk Schulz. These two entities provided all funding necessary for the workshop and the authors are very grateful.

The authors are also grateful for the financial support provided by the SERRI program under Task Order 4000064719. Funding for the workshop was not included in the task order, but all other efforts related to this multiple part research program were provided. In addition, due gratitude is extended to everyone employed at DHS and ORNL who worked diligently with the authors to make this project a success. A great deal of the success of this research can be attributed to the efforts of DHS and ORNL personnel.

A list of invited participants is provided within the report. The authors are indebted to these individuals for their selfless contributions to this effort. Ms. Walaa Badran (Graduate Research Assistant) of Mississippi State University is owed thanks for her countless efforts in formatting of the invited participant presentation slides. Dr. Sandra Harpole (Associate Vice President for Research), Dr. Donna Reese (Associate Dean of Bagley College of Engineering), and Dr. Dennis Truax (Civil and Environmental Engineering Department Head) aided in the success of the workshop by speaking at the workshop and providing general assistance, which is greatly appreciated.

Dr. Mohammed A. Gabr of North Carolina State University and Dewey W. Hunter of Ciba Corporation are owed special thanks for their courteously review of this report. The positive feedback provided was important to the successful completion of this document.
1.0 INTRODUCTION

The 2008 Geotextile Tubes Workshop was held at Mississippi State University November 17 through 19 of 2008. The workshop was cosponsored by: 1) Department of Civil and Environmental Engineering (CEE) and Office of Research and Economic Development at Mississippi State University (MSU); and 2) Coastal and Hydraulics Laboratory (CHL) of the US Army Corps of Engineers Engineer Research and Development Center (ERDC). The workshop was held as part of a larger research effort, which is described in the following paragraph.

The work presented in this report was developed in partial fulfillment of the requirements of Task Order 4000064719 issued by the Department of Homeland Security (DHS) through its Southeast Regional Research Initiative (SERRI) program administered by UT-Battelle at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee. The research was proposed by members of the CEE department to SERRI in a document dated 1 June 2007. The proposed research was authorized by UT-Battelle in its task order dated 10 December 2007. This task order included a scope of work defined through joint discussions between MSU and SERRI. Work on the project was initiated on 1 January 2008.

The work presented in this document is stand alone in the sense that it fully describes the 2008 Geotextile Tubes Workshop, but is a complimentary document in that the purpose of the workshop was to gain information for use within other portions of Task Order 4000064719. The general objectives of the entire project were to investigate means for rapidly using on-site materials and methods in ways that would most effectively enable local communities to rebuild in the wake of a flooding disaster. Within this general framework, several key work components were defined and the resulting tasks from the 9 September 2008 task order are shown below.

- **Task 1:** Erosion Control-Erosion Protection for Earthen Levees.
- **Task 2:** Bridge Stability-Lateral & Uplift Stability of Gravity-Supported Bridge Decks.
- **Task 3:** Levee Breach Repair-Closure of Breaches in Flood Protection Systems.
- **Task 4:** Pavement Characterization and Repair.
- **Task 5:** Emergency Construction Material Development-Staging Platform Construction.
- **Task 6:** Fresh Water Reservoir-Restoration of Fresh Water Supplies.
The division of the research effort into the tasks shown above was essentially an internal work division created at *MSU*. It is useful for providing a context of the research described in this report and other reports developed during the research effort. It also allowed the work to be broken into manageable portions so that key components could be reported in separate volumes to allow readers to obtain only the work related to their needs. The work contained herein is directly associated with Tasks 5 and 6. This report is the second deliverable item of the research project, hence the designation of the report as *SERRI Report 70015-002* of Task Order 4000064719. Work related to Task 6 was also submitted in *SERRI Report 70015-003*; these two reports represent full completion of Task 6. Full completion of Task 5 will be presented in subsequent reports.

Attendance and participation at the workshop was by invitation only. Participants included (in alphabetical order) those listed below. In addition to those named multiple MSU administrators, staff, and students were also in attendance.

- Dr. Shobha K. Bhatia, Syracuse University
- Dr. Barry R. Christopher, Christopher Consultants (Provided Presentation but was unable to attend workshop due to illness)
- Ms. Jody Dendurent, TenCate Geosynthetics
- Dr. Jack Fowler, Geotec Associates
- Dr. Isaac L. Howard, Mississippi State University
- Dr. Mohammed A. Gabr, North Carolina State University
- Mr. Douglas A. Gaffney, Ocean and Coastal Consultants, Inc.
- Mr. Ed Herman, US Army Corps of Engineers, Mobile District
- Mr. Dewey W. Hunter, NAFTA Dredging, Ciba Corporation
- Dr. George R. Koerner, Geosynthetic Institute (GSI)
- Dr. Dov Leshchinsky, University of Delaware
- Mr. Nate Lovelace, US Army Corps of Engineers, Mobile District
- Mr. Brian Mennes, Texas Commission on Environmental Quality
- Dr. Don Resio, USACE Engineer Research and Development Center (ERDC)
- Dr. Chris L. Saucier, Mississippi State University
This report only presents information from the *2008 Geotextile Tubes Workshop*; this report is not a literature review, nor does it present any research results related to other portions of this project. This report fully addresses deliverable Task 6d, which is to: organize a roundtable workshop to discuss ideas and experiences related to rapid development of underwater walls using geotextile tubes and to disseminate the best approach to rapidly design and construct geotextile tube walls for a fresh water reservoir. In addition the report provides information related to dewatering and construction of walls which was valuable information used in completion of Tasks 5d and 5g.

A brief description of geotextile tube technology is provided in Section 2. Summaries of the workshop presentations are included in Section 3. Information shared during the workshop panel discussions is summarized in Section 4. Section 5 discusses workshop findings as interpreted by the research team and summarizes the workshop as a whole. Finally, the full presentations given by the invited participants are provided in Section 6.

2.0 DESCRIPTION OF GEOTEXTILE TUBES

Geotextile tubes are manufactured by sewing together multiple sheets of geotextiles (typically woven) using polyester or polypropylene fabrics to create an enclosed tube. Tubes constructed of nonwoven geotextiles are not common in the US, but are used more frequently in Europe. Geotextile tubes may be filled with sand, dredged material, water, and in some cases, light-weight slurry. Geotextile tubes are similar in concept to geotextile bags, geotextile containers, and geomembrane tubes. Trademarked names for various types of geotextile tubes and similar structures include Geotube®, Geobag®, Geocontainer®, WaterStructures®, and AquaDam®.

Geotextile tubes are factory manufactured with a range of dimensions. Typical circumferences are between 4.57 to 18.29 m (other circumferences manufactured) and typical lengths are 61 m...
or less. Geotextile tubes may be placed individually or stacked. They have been used in a variety of Civil Engineering applications. Applications of geotextile tubes can typically be broken up into two categories: (1) structural applications, and (2) dewatering applications. In structural applications, geotextile tubes have been used as dikes or breakwaters for the prevention of beach erosion and the protection of coastal infrastructure. They have also been used for slope protection, to prevent scour under bridge piers and other structures, and to protect tunnels and underwater pipelines. Structural tubes are typically engineered to resist short and long term forces.

Geotextile tubes have been used to dewater dredged materials and contain contaminated materials. In such cases, the dredged and/or contaminated material is pumped into the tube, which acts as a confining mechanism. As the liquid escapes from the tube, solid particles are trapped inside. The pumping process is repeated (in some cases) until the tube is full. Eventually, the solids can be handled as relatively dry material, increasing options for transportation and disposal.

3.0 CONFERENCE PRESENTATION SUMMARIES

Both major application categories (structural applications and dewatering) were of interest to the research conducted under Task Order 4000064719. The use of geotextile tubes for structural applications was slightly favored when planning the workshop, but dewatering applications were significantly represented. In the remainder of this section, brief highlights of the workshop presentations are given as interpreted by the report authors and organized according to the following topics: (1) analysis and design of geotextile tubes, (2) use of geotextile tubes for structural applications, (3) use of geotextile tubes for dewatering applications, (4) quality-assurance and quality-control of geotextile tubes, and (5) case histories. Refer to Chapter 6 for the complete presentations given by the invited participants.

3.1 Analysis and Design

Dr. Leschinsky (Section 6.9) provided an overview of a self developed design method for geotextile tubes. The method assumes a non-yielding foundation, and is based largely on material from the references provided at the beginning of the presentation. One objective in
design of a geosynthetic tube is to evaluate the post-filled geometry of the tube, which is correlated to the storage capacity and required strength of the geosynthetic material. It was noted that the post-filled height of a geotextile tube is very difficult to control if the tube is filled in a pressurized condition. However, the height is more easily controlled if the tube is filled with soil. In some cases, tube height may be increased if the tube is placed in a confining trench.

Dr. Leshchinsky has developed a Windows-based computer program called GeoCops (original version was DOS based) that may be used to evaluate the geometry of a filled geosynthetic tube. He provided a brief overview of the mathematical formulation behind GeoCops, and demonstrated that the results of GeoCops provide a good match to experimental data. Additional information on GeoCops is available from the developer upon request.

Construction sequencing and seam strength were stated to be the two most critical factors in geotextile tube design (structural design with geotextile tubes poses additional challenges). During filling, fluid is pumped into the tubes under pressure. Geotextile tubes are typically constructed of medium to high strength geotextile material and as a result, have low efficiency seam strengths. If fluid pressure is too high, seam failure may occur. A reduction factor of 45 to 50% should be applied to design geotextile strengths to take into account possible seam failures.

Dr. Fowler (Section 6.4) provides consulting services for geotextile tube design and construction. He uses a software program called GETube Design to calculate fabric stresses during the critical time of filling and installation when the fill material is fluid. In his presentation, Dr. Fowler provided an overview of various dredging and geotextile tube filling methods for both structural and dewatering applications.

Dr. Gabr (Section 6.5) presented an overview of currently available design methods for geotextile tubes, including the method presented by Dr. Leshchinsky. He also provided an extensive list of references regarding the design of geotextile tubes, which may be found at the end of Section 6.5. It was emphasized that there is a significant lack of well-documented design procedures for geotextile tubes in the literature.
Dr. Gabr discussed design procedures that evaluate the geotextile tubes internal stability during filling and during the lifetime of the tube, as well as the tubes external hydrodynamical stability. One significant issue in design includes determining the hydrodynamic pressures both on the front and the back of the tube when they are used in coastal protection applications. Dr. Gabr presented two references for evaluating hydrodynamic pressures (i.e. Shin and Oh 2007; Liu 1981; see Section 6.5) but stressed that more research is needed. It was noted that in many cases the assumption that geotextile tubes are rigid bodies is made when in fact they are not rigid bodies. It was also stated that external stability calculations are performed assuming geotextile tubes are rigid bodies.

Mr. Lovelace (Section 6.10) provided practical factors to be considered in design and construction using geotextile tubes. He pointed out that schedule (and thus cost) is strongly affected by general climate, tidal variations, seasonal rains, and seasonal winds that can cause construction to be more difficult. Along these lines, run-off should be controlled to avoid constructing in the wet. The foundation for the tube is critical and in some cases, a foundation must first be constructed. A mild trench or “cradle” in the foundation will help prevent geotextile tube rollover. Another critical design factor for routine applications is the scour tube, which, if heavy enough, may be used to tie off the main tube. During construction, care should be taken when terminating the tubes; damage often begins at the end of the tube and progresses along the length of the tube. For long-term applications, it is critical that adequate fill be placed on top of the geotextile tubes. Mr. Lovelace recommended constructing a “test tube” whenever possible to confirm both the expertise of the installer and the installation process. This recommendation aligns with other comments regarding the need to ensure the methods used are appropriate and contractors are qualified.

3.2 Structural Applications
Both Mr. Trainer (Section 6.12) and Dr. Fowler (Section 6.4) discussed several applications and case histories of geotextile tubes used for structural applications. Marine applications of geotextile tubes include but are not limited to:

- Core of a sand dune
- Core of rip rap breakwaters
Mr. Gaffney (Section 6.6) discussed the use of poor-quality material in geotextile tubes designed for structural purposes. “Poor” quality materials are typically considered to be low-strength fine-grained soils such as silts and clays and are often cohesive. These poor quality materials are commonly used when tubes are filled with dredged material. Cohesive materials within the tubes undergo consolidation and become denser with time. Waves and currents on the tubes may pull fines out of the tubes, an erosive process termed “piping.” Piping is worse for uniformly graded fine-grained soils.

Mr. Gaffney discussed a project in which geotextile tubes were used for emergency coastal erosion control in New Jersey. For this project, approximately 275 linear meters of geotextile tube was constructed in 1997 using imported sand at a cost of about $163,000. Mr. Gaffney also discussed an ecosystem restoration project on Drakes Creek in Tennessee developed by the US Army Corps of Engineers, and the case history of the Nyack Municipal Marina on the Hudson River. More details on these projects can be found in Section 3.5.

Mr. Trainer emphasized that for sand dune protection, a scour apron is necessary on both sides of the main structural tube. The apron should be taut on the seaward side of tubes in order to dissipate wave energy. Similar to Mr. Lovelace, Mr. Trainer pointed out that a high volume of water escapes the tubes during pumping and consolidation when using sand, and that the escaping water can erode nearby soil. The run-off can be controlled with scour aprons.

A presentation provided by Dr. Christopher indicated widespread acceptance of viable new technologies require excessive time. Many non-technical issues were noted regarding implementation of geotextile tubes in a variety of structurally oriented applications within the Strategic Highway Research Program (SHRP2). They included: 1) lack of knowledge about the
technology; 2) lack of policies to encourage new technology use; 3) lack of qualified contractors, personnel, materials, and equipment; and 4) lack of profit or return on investment.

3.3 Dewatering

Geotextile tubes are often used to dewater fine-grained sediments. With time, water escapes the geotextile tubes and as a result, the shapes of the tubes change. Dr. Fowler listed factors for estimating consolidation, bulking, and shrinkage: (1) in-situ density, percent solids, or moisture content of the fill material prior to dewatering, (2) in-situ density or percent solids or moisture content of the fill material after dewatering (target value), (3) gradation and/or Atterberg Limits (LL, PL, & PI) of the fill material, (4) settling time, and (5) polymer requirements. The bulking and shrinking of the fill material varies based on dredging scenarios and the properties of the fill. Dr. Fowler discussed several dewatering case histories, which are presented in Section 6.4.

Mr. Hunter (Section 6.7) discussed the chemistry and use of polymers in treating fine-grained sediments dewatered within geotextile tubes. Polymers are only effective for soils such as silts and clays (soils that pass the No. 200 sieve). Chemical treatment may be used on problematic sediments (i.e. contaminated soils) and improve dewatering process efficiency. It was noted that Ciba manufacturers on the order of 200 flocculants. There are several ways in which the dewatering process is improved through the use of polymers. Polymers may be used to improve the solids-liquid separation with time. As a result, the amount of water discharged during the dewatering process is increased. Finally, polymers improve the solids removal efficiency, or capture rate. The capture rate is defined in Eq. 1.

\[
C_R = \frac{S_{In} - S_{Out}}{S_{In}}
\]

(1)

Where,

\(C_R \) = capture rate
\(S_{In} \) = solids in
\(S_{Out} \) = solids out
Mr. Hunter provided test results where an organic clay sample from New Orleans (referred to in this research as Soil 2) was tested at the Ciba laboratory in October of 2008 in the presence of MSU research personnel. An 11.51% slurry was evaluated using TenCate’s Geotube® Dewatering Test (GDT), which is informally referred to as a Pillow Test in some instances. Summary details were provided by Mr. Hunter in Section 6.7, and full details will be made available in future reports within Task Order 4000064719 related to dewatering soil.

A demonstration was performed during the workshop by Mr. Hunter using Soil 2. The initial percent solids of the sample were 6.2% (the sample was diluted to 6.2% solids for visualization during the demonstration). A settling column demonstration and a gravity flow drainage test were performed. The settling column demonstration separated large quantities of water from the solids in seconds, and immediately after the demonstration the columns were carefully transported to the laboratory where the clean water was pumped out of the top of each of the two columns to allow measurement of the moisture content (Eq. 2) and the percent solids (Eq. 3). The gravity flow drainage test was performed and passed around to participants for visualization (took only a few minutes). Thereafter, a sample was taken from the apparatus used to perform the experiment and tested for moisture content and percent solids. The results of the two settling column demonstrations were: 1) $w_\%$ of 347 and 388; and 2) $TS_\%$ of 22.4 and 20.5. Results of the gravity flow drainage test were: 1) $w_\%$ of 285; and 2) $TS_\%$ of 26.0.

\[
\begin{align*}
 w_\% &= \frac{w_w}{w_s} \times 100 \\
 TS_\% &= \frac{w_s}{w_w + w_s} \times 100
\end{align*}
\]

Where,

- $w_\%$ = moisture content expressed as a percentage
- w_w = weight of water (g)
- w_s = weight of solids (g)
- $TS_\%$ = total solids expressed as a percentage
Dr. Bhatia (Section 6.2) discussed on-going research being performed at Syracuse University, which included discussion of the capture rate (Eq 1). The goal of the research is to evaluate the rate and efficiency of the dewatering process using geotextile tubes, both with and without the use of polymers. Specific goals of the research include: (1) evaluating the relationship between geotextile properties, sediment characteristics, and dewatering parameters, (2) evaluating the use of polymers for enhancing the dewatering process, and (3) assessing the suitability of test methods in predicting field dewatering performance. The research presented consisted of performing laboratory tests using a non-plastic silt. Preliminary conclusions and observations include that piping of fine-grained material increases when a non-woven geotextile is used, and that polymers are effective in decreasing piping and enhancing the dewatering process but only up to a “critical polymer dose” level.

3.4 QA and QC of Geosynthetics and Geotextile Tubes
Dr. Koerner (Section 6.8) discussed geosynthetic material characteristics and corresponding laboratory testing. He emphasized the leadership role of manufacturers in geotextile and geotextile tube applications. He pointed out that project specifications generally contain check lists on the manufacturers only; in other words, project specifications often control the quality of geosynthetic product as a correlation to achieving desirable construction properties, but they do not provide performance guidelines. The most commonly used geotextile tube specification is GRI-GT10, Application Specification for “Coastal and Riverine structures,” which was developed in 1999. Similar to Dr. Leshchinsky, Dr. Koerner noted, that the “strength” of the tube is controlled by seam strength.

3.5 Case Histories

Field-Scale Test of Rapid Repair of Levee Breach
Dr. Resio presented results from a Department of Homeland Security (DHS) sponsored research program titled “Rapid Repair of Levee Breach” initiated in 2007. Project team members include representatives from the US Army Corps of Engineers Engineer Research and Development Center and the private sector (Oceaneering and Kepner Plastics). Dr. Resio and his colleagues at the Engineer Research and Development Center (ERDC) conducted a demonstration at the U.S.
Department of Agriculture’s Agriculture Research Service’s Hydraulic Engineering Research Unit Laboratory in Stillwater, Oklahoma in which they used a geomembrane tube, partially filled with water, to block a 2.43 m wide breach in a quarter scale levee. The tubes were transported by helicopter and floated into place using the water flowing through the breach. Further research is ongoing but according to Dr. Resio the results of the initial tests in Oklahoma are promising.

Bolivar Island, TX
Dr. Fowler discussed a case history in which polyester geotextile tubes were used for shore protection on the Bolivar Peninsula along the Texas Coast. Approximately 5,500 linear meters of tubes were constructed in 2000. A UV shroud was placed above the tubes to protect them from long-term UV exposure. Dr. Fowler did note, however, that polyester was not an ideal material for these tubes but did not elaborate. The tubes protected structures along the coast line during Tropical Storm Allison in June 2001. Though the tubes were initially buried, they were exposed during the storm. The tubes were successful in protecting the coast line in 2001 and as a result, an additional 4,500 linear meters of geotextile tubes were placed. The same tube system also protected the coast during Hurricane Ike in 2008.

Coastal Protection During Hurricane Ike
Dr. Gabr made a presentation on performance of geotextile tubes during Hurricane Ike. Nine geotextile tubes were used to protect 12.2 km of shoreline. The tubes had circumferences of 9.14 m and lengths of 76.20 m. The factors of safety for sliding, overturning, and bearing capacity were determined based on the assumption that the geotextile tubes were rigid bodies. Furthermore, it was assumed that the tubes had an oval shape and that the contact width at the base of the tube was 80% of the longest diameter. Two significant problems that developed during and after the hurricane included: (1) erosion developed on the landward side of the tubes, and (2) some tubes were overtopped while others were completely buried. Overall, the geotextile tubes provided sufficient protection for landward structures.

Temporary Dam in Morocco
Mr. Trainer discussed a temporary dam constructed in Morocco using Geotube® units. (Geotube® is the registered name held by TenCate for their geotextile tubes.) The dam was
approximately 70 m long. The fill height of the tubes was 3 m. The existing rock walls were first smoothed by placing concrete. The first Geotube® unit was placed, and then the second was placed 3 m from the first. The gap between the bottom tubes was filled with sand and then covered with a geotextile. The third and final Geotube® unit was installed on top of the other two units and intermediate sand. A membrane was then placed over the entire structure. Once the dam was created, water was pumped out from one side of the dam to allow construction.

USACE Drakes Creek Restoration

Mr. Gaffney discussed an ecosystem restoration project on Drakes Creek in Tennessee for the US Army Corps of Engineers. A U-shaped dike-contained channel was constructed using geotextile tubes. The purpose of the channel was to increase the discharge velocity of silt-laden stream water into a larger river. Approximately 640 linear meters of geotextile tubes, with circumferences of 13.72 m, were constructed. The tubes were filled with dredged material which consisted of a wide range of material from organics to silty sand to 125 mm stone. The river was dredged to increase depth and the new river alignment provided improved habitat. The project was constructed in 2000 and in 2008 the geotextile tube dikes remained in place and were functional.

Nyack Municipal Marina

Mr. Gaffney made a presentation on use of tubes at the Nyack Municipal Marina on the Hudson River. The project consisted of removing approximately 1,375 m³ of river sediment quickly and cost-effectively in a populated setting. The dredged material consisted of plastic and organic silt (MH and OH). Competing alternatives to the use of geotextile tubes included open air disposal and filter presses. The material was placed in geotextile tubes and mixed with a polymer to enhance the dewatering process. Mr. Gaffney noted that dewatering and consolidation of dredged material occurs faster in geotextile tubes than in standard self-weight consolidation procedures. Another benefit of using geotextile tubes for dewatering is that they are not a “batch process.” One factor, however, to consider in river dredging problems is the vast amount of large debris in river bottoms. At the Nyack Municipal Marina project, the dewatered/treated sediment was subsequently mixed with lime and used in building a parking lot. The material was stabilized with 15% lime and tested using a hand held vane shear device practically identical.
to the *shear* device used in Task 5 of the research conducted by the MSU research team under Task Order 4000064719. When asked about the hand held vane shear device, Mr. Gaffney had no positive or negative feelings towards it.

Gaillard Island

Dr. Leshchinsky presented information on a project conducted on Gaillard Island. During the project, moisture content data was taken along a geotextile tube. The results of the moisture content data can be seen in Table 1.

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Location (m)</th>
<th>Unit Weight (g/cm³)</th>
<th>Moisture Content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1.25</td>
<td>214</td>
</tr>
<tr>
<td>70</td>
<td>1.19</td>
<td>1.17</td>
<td>308</td>
</tr>
<tr>
<td>140</td>
<td>1.19</td>
<td>284</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>1.35</td>
<td>127</td>
</tr>
<tr>
<td>70</td>
<td>1.29</td>
<td>1.19</td>
<td>153</td>
</tr>
<tr>
<td>140</td>
<td>286</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.0 PANEL DISCUSSIONS

4.1 Panel Discussion: Structural Applications

A safe water supply is central to the survival and recovery of flooded communities. The Environmental Protection Agency (EPA) and World Health Organization (WHO) assume 2 liters of water is needed per individual per day for ingestion. When water for cooking, first aid, and sanitary needs are added to the ingestion requirements, the amount of fresh water required in a community can easily reach 40 L per day per individual. For a community of stranded residents (lasting days to weeks) and aid workers (lasting days to months), the reservoir required to store an adequate fresh water supply would have to be quite large. In addition, distribution of the water may be challenging, so that placement of the fresh water supply at specific locations to optimize the needs of the community would address a primary need in the aftermath of a disaster.
During the panel discussions, the workshop participants discussed the design issues associated with constructing emergency reservoirs using geotextile tubes. The concept of developing a water reservoir for a disaster area where potable water could not be trucked in was said to be a potentially valuable concept. One example provided was an offshore location such as an island that had been struck by a hurricane. Participants agreed that a decision tree was important to guide the responder in making logical decisions based on the disaster, materials available, constraints, site, and timeline. No such decision tree currently exists.

For discussion purposes a typical emergency reservoir, 3.05 m tall with dimensions of 61 m square, and a design life of 6 months was considered. However, a floating water reservoir was also mentioned as an option. This could be performed by taking two water filled geomembrane tubes and attaching a geomembrane between them. Treated water could be pumped onto the geomembrane causing it to sink below the floating perimeter.

There are many challenges associated with designing emergency reservoirs using geotextile tubes. These challenges are discussed in the following paragraphs. Further research into the applications and design of such reservoirs is being performed at Mississippi State University.

Planning

Large diameter geotextile tubes are not as readily available, and therefore, a reservoir would likely be constructed from smaller stacked tubes. A minimum of three days was said to be required to obtain standard tubes from the manufacturer in the majority of cases. It was noted that dewatering tubes are more readily available. Special-order tubes would take longer to obtain. According to Dr. Fowler, one water filled geomembrane tube could be filled on the order of 3.7 m high. The overall tone of the participants seemed to favor a stacked system that did not rely on a single tube that was very tall, regardless of the fill material. For stacked flexible tubes, it should be recognized that there is currently no widely accepted method for designing a wall constructed of a group of flexible tubes.
Challenges include the difficulty in obtaining permits for marine construction, and the high cost of rapid equipment mobilization. Furthermore, soft marine soils may experience large short-term settlements that could adversely affect construction.

When selecting a site to construct the reservoir, the preferred location for construction is a hard and flat surface (e.g. parking lot). Puncture resistant specifications for the tubes and/or specifications to identify the procedures for site preparation would be needed. The site should be cleared of all obstructions before placement, which could be difficult in flooded areas. Location of utilities would need to be performed and the material acquisition boundaries defined for this application.

During the planning stage, designers should recognize that water filled tubes eliminate the need for a dredge. The acquisition of fill material from the local area should be considered.

Construction

A reservoir constructed with a single tube providing the required height could be easier to build and avoid some problems at the corners of a square reservoir. It was mentioned, though, that if tubes need to be stacked that an elliptical shape could pose some problems: (1) the outside perimeter of the tubes would experience high stresses, and (2) tube placement is not very accurate. The reservoir, therefore, would more likely be built in a square configuration, stacking the corners in a configuration similar to that of a log cabin, as sketched in Figure 1.

If tubes are filled with water, seaming the bottom two tubes together will probably be necessary provided the tubes do not contain a baffle. It was recommended that seams be sewn with a union special, which is a hand held device (110 V). To check the seam, a peel test was recommended at a threshold value of 40%. It was noted that it will be difficult to seam and weld membranes in a disaster situation. A hot wedge welder was also mentioned.

Settlement, thermal variations leading to expansion and contraction, and leaking that results in reduced wall height could be potential concerns. If the walls of the reservoir are filled with contaminated material it will probably need to be treated at the end of the process. Polymers could be useful for this application.
Figure 1. Schematic of Stacked Tubes to Form a Reservoir
4.2 Panel Discussion: Dewatering Applications

The discussion began with posing a general problem: area flooded with 2.44 to 3.05 m of water and a subsurface soil profile with 7.6 m of clay covering sand. The goal was to use the material beneath the water as an emergency construction material. Dr. Fowler was of the opinion that it was essential to find suitable material.

Conversation related to use of the material focused on movement of the material from beneath the water to the construction site. One component discussed was the DryDredge™. It is a dredge that uses a positive displacement pump fed by a clamshell bucket. This dredge was mentioned as a means of transporting low water content material.

Dewatering technology (i.e. polymers) were also discussed during the panel discussions. A dredge on a barge could pump material (10% to 30% solids) onto a second barge with a clarifier (this could either be a standard clarifier or a geotextile tube). The material would be held on the barge for a short time (e.g. 1 hour) and then be transported into either a mixer for stabilization materials or into the geotextile tube. A general flowchart was sketched to highlight the major steps required to perform the functions using dewatering polymers. This method would transport high water content materials, dewater them, and then use the dewatered mass for filling the geotextile tubes.

It was noted that construction time for a reservoir made of geotextile tubes could be considerable; a production rate on the order of 110 wet metric tons per hour was mentioned using the DryDredge™. It was crudely estimated during the panel discussion that the method using polymers could theoretically produce on the order of the same amount of material as the DryDredge™. Regardless of the transport mechanism, the material could be placed in a mixer for soil stabilization and then moved to the final location, or moved to the final location and stabilized in place.

5.0 SUMMARY OF WORKSHOP FINDINGS

Several important points can be taken from the workshop. First, a consensus was not reached regarding the appropriate uses and/or approaches to implement regarding the two primary project
goals (construction of structural walls and rapid dewatering of material for immediate re-use in construction). A wealth of information was presented and discussed, but a clear consensus was never achieved.

The significance lies in the immediate nature in which a large disaster must be addressed. To effectively use geotextile tubes in this environment, planning, training, and demonstration exercises are needed beyond that currently in existence for both applications discussed. Provided the invited participants adequately represent the geotextile tube industry as a whole, implementation of rapid geotextile tube projects could be problematic as of the date of the workshop. Select participants indicated construction time of comparable projects in normal conditions with typical personnel and equipment resources could take a few weeks.

One subject discussed by the group and echoed by Dr. Koerner is that there is a lack of quality-assurance and quality-control (QA and QC) during the design and installation of geotextile tubes. Dr. Koerner and Mr. Trainer pointed out that there are a lot of geotextile manufacturers, but designers need to consider only geotextile tube manufacturers, and they need to consider specialty contractors to build with the geotextile tubes (often in conjunction with dredgers). Currently, different construction techniques exist based on geographically available equipment. The workshop group agreed that there is a need to develop a pre-certification system for geotextile tube installers, who then can be on a list for rapid response.

It was suggested that the certification system could be similar to that of the International Association of Geosynthetic Installers (IAGI), though IAGI is currently not relevant to geotextile tubes since they do not have current geotextile tube test protocols. It was suggested that the Geosynthetics Institute (GSI) could certify geosynthetic tube installers and develop standard tube specifications and standards of practice for tube installation. The result would be standardization of tube materials, fabrication, and installation. Pre-certification of emergency response contractors was specifically endorsed by multiple participants, notably Mr. Gaffney, Mr. Trainer, and Mr. Lovelace.
The previous discussion is applicable to structural and dewatering applications within a disaster environment. Items applicable to only one of the two categories have been separated. They can be found in the following sections.

5.1 Summary of Findings for Structural Applications

There was found to be a lack of well documented design procedures for structural applications. External hydrodynamical stability is the parameter that appears to be the least understood for this application in terms of geotextile tube stability in structural applications. Rigid bodies are often assumed. This assessment was based largely on data provided by Dr. Gabr. On the other hand, internal stability methodologies and software appear to be fairly well developed.

Two distinct categories of structural applications were found to exist depending on the material filling the tubes: 1) sand, i.e. select material, or 2) fine grained material such as silt or clay, i.e. non-select material. The use of select materials to fill geotextile tubes for structural applications was, in general, strongly preferred. The use of non-select material (e.g. silt and clay) was a point of contention. Specific details regarding non-select material use were discussed without producing directed or immediately applicable end products. Some participants were of the opinion that non-select materials with very low initial percent solids were worth investigation while other participants were less optimistic and in turn less supportive of the concept. Dr. Koerner indicated that there were potential problems with fine grained material inside a geotextile tube used for structural applications prior to consolidation of the material. Non-select material applications were presented during presentations of invited participants but they were not rapid projects (at least not rapid based on the needs of a disaster environment). Rapid dewatering and/or cementitious stabilization of non-select materials were also discussed and felt to be potentially viable options by some participants.

Construction practices were discussed but not conclusive. It was mentioned that the best practice was to fill one geotextile tube, fill it all at once, and match equipment with the geotextile tube volume. Movement of material to where the geotextile tubes are to be filled was philosophically debated. When using select material, the lack of affinity for water was noted to allow 10 to 15%
solids slurry to fill a geotextile tube more evenly and more quickly than say 30% solids. Sand was slurried and pumped into Geotube® units in a project at the NASA Wallace Flight Center.

Additional items discussed during the workshop that are noteworthy are provided in the following bullets.

- Polyurea coated tubes could provide some benefits to a freshwater reservoir. This coating has been sprayed onto geotextile tubes before and after deployment. The top portions of the tubes could be sprayed with the coating to increase puncture resistance and make them more impermeable while the bottoms of the tubes remain untreated.
- Traditional applications cost $245 to $825/m including material and construction costs according to Mr. Trainer. Offshore work requiring divers is noticeably more expensive, but the costs associated with emergency construction using geotextile tubes does not appear to be way out of line with disaster recovery.
- The USACE is considering slurrying and pumping material on upcoming projects on the Mississippi coast in a wetlands area in conjunction with filling geotextile tubes.
- According to Mr. Lovelace, the first geotextile tube placed on the project is often the worst.
- Mr. Lovelace indicated marsh buggies can be useful when building with geotextile tubes.
- Mr. Trainer indicated patching material for geotextile tubes can be purchased at local retailers (e.g. building supply stores).
- Care should be taken when terminating geotextile tubes since damage often begins at the ends of tubes.
- Many of the problems faced by the Strategic Highway Research Program included in a presentation provided by Dr. Christopher appear to be similar to challenges of emergency use of geotextile tubes.
- The Dry DREdge™ presented by Dr. Fowler can pump many materials at in-situ density with no free water. This attribute is valuable for use when attempting to produce an emergency construction material such as in Task 5 of Task Order 4000064719. Photos were provided of material pumped at 70% solids.
• Geotextile tubes were used as the main structural component for ecosystem restoration and made beneficial use of poor quality dredged material in work presented by Mr. Gaffney.
• Acquisition of fill material from the local area was noted to be very important.
• Levee breach work of Dr. Resio shows significant promise for rapid construction using geotextile tubes. Effective levee repair must be conducted within hours.

5.2 Summary of Findings for Dewatering Applications

Rapidly dewatering material for immediate re-use as an emergency construction material was discussed at the workshop. The majority of this dialogue occurred during the corresponding panel discussion. Items discussed during the workshop that are noteworthy are provided in the following bullets.

• Dr. Bhatia’s research indicates polymer tends to decrease permeability of the filter cake.
• Mr. Hunter noted that most polymer companies keep little inventory in the current markets so warehousing may be needed.
• Ciba has a containerized liquid polymer makedown system ideal for disaster dewatering needs. It is completely enclosed, can be transported on a commercial tractor-trailer, and only requires external water and power. The difficulty could be the limited number of these units commercially available. Smartfeed™ is another mobile feed chemical system for polymers.
• Dewatered sediments are commonly left much longer than would be possible in the current project, but the percent solids achieved appear sufficient for development of emergency construction material. For example, the Fox River sediments averaged 50% total solids. The challenge to researchers is balancing an acceptable percent solids with tolerable dewatering times.
• Many tools exist in current practice that make rapid dewatering worth investigation, but research and planning is needed before a method would be ready for implementation.
Fourteen presentations were given during the course of the workshop. The initial presentation was given by one of the report authors outlining the workshop and use of the information obtained. The remaining thirteen presentations were given by invited participants. The presentations have been included in essentially the same form as they were presented at the workshop. All presentations have been placed into a standard format for consistency within this report, and some presentations have been slightly adjusted from the form in which they were presented to preserve space. Any modifications that could have affected the content were discussed with and approved by the presenter. The thirteen presentations given by the invited participants are provided in alphabetical order.
Section 6.1

Geotextile Tubes Workshop
Statement of Workshop Goals: Isaac L. Howard

Mississippi State University
Civil and Environmental Engineering Department

Mississippi State University
Office of Research

US Army Corps of Engineers Research
and Development Center Coastal and
Hydraulics Laboratory
Geotextile Tubes Workshop

Part of a research project funded by:

the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under SERRI.
Geotextile Tubes Workshop

Overall objective of SERRI project:

Develop materials, and design and construction procedures that may be rapidly deployed to protect and restore infrastructure during flooding events.

Six Tasks:

1: Levee Erosion Protection During Overtopping
2: Bridge Deck Stability
3: Levee Breach Closure
4: Rapid Pavement Repair
5: Emergency Construction Material
6: Geotextile Tubes – Fresh Water Reservoir
Geotextile Tubes Workshop

Task 5 Goal:

Develop Emergency Construction Material Using a Variety of Techniques Including Rapidly Dewatering Dredged Soil Using Polymers and Geotextile Tubes

\[
y = 0.0591\ln(x) + 0.0171
\]

\[R^2 = 0.8118\]

\[(e) \text{ Output of High Percent Solids} \quad (f) \text{ Output of Low Percent Solids}\]
Geotextile Tubes Workshop

Task 5 Goal:
Develop Emergency Construction Material Using a Variety of Techniques Including Rapidly Dewatering Dredged Soil Using Polymers and Geotextile Tubes

(a) Synthetic Liner
(b) Pouring Stabilized Slurry Into Mold
(c) Shoveling Stabilized Slurry Into Mold
(d) Massaging Out Large Air Pockets
(e) Striking Off Surface
(f) Final Product
Geotextile Tubes Workshop

Task 6 Goal:

Optimize geotextile tube use in disaster environments
Geotextile Tubes Workshop

2008 Workshop Goal:

Gather, synthesize, and disseminate current knowledge regarding State-of-Practice of the design and use of geotextile tubes.

Consider: design, specifications, construction, case studies, etc.
Dissemination of Information:

- Presentations will be directly published in the form of conference proceedings.
- Information discussed during panel discussions and breakout sessions will be recorded, edited, and published in a final report.
- Individual contributions of information during these general discussions will remain anonymous.
Geotextile Tubes Workshop

Attendees:

Government Agency?

University/College?

Manufacturer?

Consultant?

Institute?

Emergency Management?

Other?
Geotextile Tubes Workshop

November 17 – 19, 2008

Mississippi State University

Welcome!
Section 6.2

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- **Presentation Title:**

 Laboratory Study on the Role of Polymers in Rapid Dewatering

- **Author:**

 Shobha K. Bhatia, PhD

- **Affiliation and Contact Information:**

 Civil and Environmental Engineering

 Syracuse University, Syracuse, New York 13244-1190

Jointly Sponsored by:

- Mississippi State University Civil and Environmental Engineering Department
- Mississippi State University Office of Research
- US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Research Objectives

- To conduct a systematic laboratory study to evaluate relationship between geotextile index properties, sediment characteristics and dewatering parameters;
- To evaluate the use of polymers for enhancing dewatering parameters;
- To assess the suitability of test methods in predicting field dewatering performance;
- To develop design recommendations for designers and engineers.
Project Implementation

- **Design** - Geotextile, No. of tubes, configuration of tubes, dewatering rate, and efficiency

- **Lab Testing** – Small scale (Jar Sedimentation, Falling Head and Pressure Filtration Test)

- **Field Testing** - Hanging Bag Test, GDT, Demonstration Test, Full Scale Test
Geotextile tubes design considerations

1) Type of geotextile, geometry and number of tubes
2) Deformed shape
3) Final configuration

Dewatering Parameters

1) Filtration Efficiency (%) = \(\frac{TS_{initial} - TSS_{final}}{TS_{initial}} \)
 where, \(TS_{initial} = \) total solids in slurry; \(TSS_{final} = \) total suspended solids in filtrate
2) Dewatering Time

Geosynthetic Research Laboratory

- Capillary Flow Porosimetry
- Pressure Filtration
- Falling Head Test
- Hanging Bag Test [Small & Large]
- Jar Test
- Streaming Current Detector
- Filtrate Quality Evaluation
Geotextiles used in the study

W1 - monofilament W2 - multifilament W3 - multifilament COMP –needle punched NW – non-woven

Pore size, volume, permeability, density, surface area, and adsorption

W2 - multifilament
Geotextile Properties

<table>
<thead>
<tr>
<th>Geotextile</th>
<th>Structure-polymer type(^1)</th>
<th>Mass/unit area (g/m(^2))</th>
<th>Thickness (mm)</th>
<th>Bubble Point(^2) (mm)</th>
<th>AOS(^3) (mm)</th>
<th>(\psi)(^4) (s(^{-1}))</th>
<th>Grab tensile strength MD x CD (^5) (kN/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1</td>
<td>W, MF-PP</td>
<td>585</td>
<td>1.04</td>
<td>0.40</td>
<td>0.425</td>
<td>0.37</td>
<td>96.3 x 70</td>
</tr>
<tr>
<td>W2</td>
<td>W, MU-PET</td>
<td>600</td>
<td>1.33</td>
<td>0.30</td>
<td>0.27</td>
<td>0.37</td>
<td>175 x 175</td>
</tr>
<tr>
<td>W3</td>
<td>W, MU-PET</td>
<td>813</td>
<td>1.73</td>
<td>0.25</td>
<td>0.15</td>
<td>0.38</td>
<td>175 x 175</td>
</tr>
<tr>
<td>NW</td>
<td>NW, NP-PP</td>
<td>550</td>
<td>0.5</td>
<td>0.23</td>
<td>0.2*</td>
<td>0.41</td>
<td>100 x 100</td>
</tr>
<tr>
<td>C</td>
<td>COMP-PET,PP</td>
<td>906</td>
<td>3.27</td>
<td>0.12</td>
<td>0.045</td>
<td>0.39</td>
<td>184 x 183</td>
</tr>
</tbody>
</table>

\(^2\) Bubble Point (as per as ASTM D6767-02);
\(^3\) Manufacturer value;
\(^4\) \(\psi\) (permittivity); and
\(^5\) MD: Machine direction and CD: Cross direction.

Sediments

<table>
<thead>
<tr>
<th>Property</th>
<th>Cayuga Lake sediments</th>
<th>Tully Silt (Coarse)</th>
<th>Tully Silt (Fine)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_{10})</td>
<td>0.08</td>
<td>0.007</td>
<td>0.001</td>
</tr>
<tr>
<td>(D_{50})</td>
<td>0.1</td>
<td>0.077</td>
<td>0.007</td>
</tr>
<tr>
<td>(D_{60})</td>
<td>0.18</td>
<td>0.13</td>
<td>0.022</td>
</tr>
<tr>
<td>(C_u)</td>
<td>2.25</td>
<td>18</td>
<td>22(^1)</td>
</tr>
<tr>
<td>(C_c)</td>
<td>0.7</td>
<td>6.51</td>
<td>2.22(^1)</td>
</tr>
<tr>
<td>(S_s)</td>
<td>350.8</td>
<td>438.12</td>
<td>938.46</td>
</tr>
</tbody>
</table>

\(^1\) \(C_u\): coefficient of uniformity = \(D_{60}/D_{10}\); \(C_c\): coefficient of curvature = \((D_{50})^2/(D_{10})(D_{60})\);
\(^2\) Estimated; \(S_s\) is the specific surface area using the method proposed by Chapuis and Légaré (1992).
Polymer

- Solve 154 was determined to flocculate and dewater Tully Silt most effectively compared to other chemical conditioning products - WaterSolve, LLC (2007)

- Solve 154*: Water-in-Oil Emulsion Anionic Flocculent Polyacrylamide Copolymer
 *proprietary and chemical composition has not been disclosed

Assessment of Dewatering Performance

Small Laboratory Tests
- Jar Sedimentation Test (JST)
- Falling Head Test (FHT)
- Pressure Filtration Test (PFT)

Large Scale Tests
- Hanging Bag Test (HBT)
- Geotube Dewatering Test (GDT)
Jar Sedimentation Test (JST)

To determine:
- Initial settling rate (u_i)
- Final proportion of settled sediments (S_p)
- Need for chemical conditioning if $u_i < 0.1 \text{ cm/s}$

Wakeman and Tarleton (2007)

Falling Head Test Results
SU Pressure Filtration Test Setup

- Objective: To determine FE and FR of geotextiles under pressure
- Volume of Slurry: 0.6 L
- Test Duration: 1-2 hrs

Flow Rate - Tully Silt

![Graph showing flow rates at different pressures and times](image)

- Water content = 200%
- 7kPa
- 35kPa
- 70kPa

![Filter cake and filtrate](image)
Results for Tully Silt with Nonwoven and Composite Geotextiles

Pressure=35kPa FE (%) Piping rate (g/m²)

COMP, 200% 99.7 141.9
NW, 200% 56.3 24683.2

Typical Pressure Filtration Test Results

Geotextile W1
20 % Solids, Pressure = 34.5 kPa
- Tully Silt (Fine) - 3 tests
- Tully Silt (Fine) - 3 tests
- Cayuga Lake Sediments - 3 tests
Geotextile W1
33 % Solids, Pressure = 34.5 kPa
PFT Results: Cake Resistance

- Non-linearity in the \(\frac{(t-t_i)}{(V-V_i)} \) vs \(V \) plot indicates permeation through a formed “sedimented cake.”
- Cake resistance increases with time resulting in increase of dewatering time.
- Cake resistance is directly proportional to the solids percentage.

Applied Pressure: 35 kPa

Soil Piping

- Allowable piping rates: 2500 g/m² (Laffitte et al., 1989)
- 1900 g/m² (Ayukstic and Ellis, 2002)
Enhancement of Dewatering

- Chemical conditioning
 - Solve 154 was used to condition Tully silt (Fine) at 33 % solids

- Jar test
 - Ensure mixing conditions and estimate range of optimal polymer dosage
 - Polymer dosage
 - Varied from 0 to 200 ppm in 25 ppm increments
 - Mixing energy
 - Velocity gradient \(G \) varied from 50 to 200 \(\text{s}^{-1} \) for optimal dose
 (Recommended by WaterSolve, LLC to correspond to anticipated \(G \) in practice)

- Pressure Filtration and Other Tests
 - Optimal dewatering conditions (Polymer dosage and mixing)

Evaluation of Chemical Conditioning

Before dosing flocculent

After dosing flocculent
Temporal flow characteristics for dewatering polymer treated Tully silt (Fine) at 33% using geotextile W1.
Variation of Filter Cake with Polymer Dose

- 0 ppm
- 12.5 ppm
- 175 ppm
- 200 ppm

Variation of Cake Height and Water Content With Polymer Dosage

- Inter and intra floc moisture content
Range of piping observed for different polymer dosage

Variation of piping with and without polymer conditioning
Influence of Geotextile Type with and without Polymer

Effectiveness of Polymer Conditioning

Effectiveness(%) = \left(\frac{P_{TS(F)} - P_{TS(F)+P}}{P_{TS(F)}} \right) \times 100

where

- \(P_{TS(F)} \) = piping with Tully silt (Fine)
- \(P_{TS(F)+P} \) = piping with polymer-conditioned Tully silt (Fine)
Effectiveness of Polymer Conditioning

Comparison of Test Methods

<table>
<thead>
<tr>
<th>JST</th>
<th>FHT</th>
<th>PFT</th>
<th>HBT</th>
<th>GDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Sampled (cm²)</td>
<td>-</td>
<td>40-60</td>
<td>40</td>
<td>1.43X10⁵</td>
</tr>
<tr>
<td>Flow condition</td>
<td>Vertical, 1-D</td>
<td>Vertical, 1-D</td>
<td>Vertical, 1-D</td>
<td>Vertical and Radial, 2-D</td>
</tr>
<tr>
<td>Volume of Slurry (L)</td>
<td>1.0</td>
<td>1.25</td>
<td>0.8</td>
<td>200</td>
</tr>
<tr>
<td>Pressure Applied</td>
<td>NO*</td>
<td>NO*</td>
<td>YES</td>
<td>NO*</td>
</tr>
</tbody>
</table>

* Dewatering is under gravity
Hanging Bag Test Results

Geotextile Tube Demonstration (GDT) Test

- Sediments slurry is rapidly filled to a predetermined height to facilitate dewatering under a pressure of 6.0KPa.

- Filtrate samples are collected and upon completion of the dewatering, the bag is cut open to assess final percentage solid.
Typical HBT Results

Small and Large Scale laboratory Test Results on Tully Fine at 33% solid content

<table>
<thead>
<tr>
<th>Parameter</th>
<th>FHT</th>
<th>HBT</th>
<th>GDT</th>
<th>PFT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dewatering Efficiency (%)</td>
<td>125.2</td>
<td>127.8</td>
<td>132.0</td>
<td>126.0</td>
</tr>
<tr>
<td>Percent Piping (%)</td>
<td>75</td>
<td>56</td>
<td>85</td>
<td>78</td>
</tr>
<tr>
<td>Filter Cake Height (mm)</td>
<td>5.3</td>
<td>110</td>
<td>3.9</td>
<td>6</td>
</tr>
<tr>
<td>Filter Cake Moisture Content (%)</td>
<td>34.6</td>
<td>33.2</td>
<td>29.3</td>
<td>34.0</td>
</tr>
<tr>
<td>Filtrate Volume / Initial Slurry Volume</td>
<td>0.87</td>
<td>0.73</td>
<td>0.81</td>
<td>0.88</td>
</tr>
</tbody>
</table>
Influence of Index Properties on Dewatering

Falling Head, Hanging Bag and Geotextile Tube Demonstration Test
Preliminary Conclusions

- Fundamental understanding of sedimentation is essential to understand dewatering of dredged sediments
- \((AOS/d_{85}) \leq 1.5\) was found to be a conservative retention criterion to limit piping to 1900 g/m\(^2\) (Aydilek and Edil, 2002) for dewatering natural sediments
- Polymer use was found to be effective in optimizing dewatering by minimizing piping and DT
- A new criterion is proposed to limit the piping value to 800 g/m\(^2\) for dewatering polymer-conditioned sediments
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Laboratory Study on the Role of Polymers in Rapid Dewatering by Shobha K. Bhatia, PhD.
Section 6.3

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

Presentation Title:

Mainstreaming Geotextile Tube Implementation

Author:

Barry R. Christopher, PhD, PE

Affiliation and Contact Information:
Christopher Consultants,
210 Boxelder Lane, Roswell, GA 30076
tel: 770-641-8696
e-mail: barryc325@aol.com

Jointly Sponsored by:
•Mississippi State University Civil and Environmental Engineering Department
•Mississippi State University Office of Research
•US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
"An important scientific innovation rarely makes its way by gradually winning over and converting its opponents... What does happen is that its opponents die out and that the growing generation is familiarized with the idea from the beginning."
— Max Planck

Sounds like Civil Engineers, but we can no longer wait for the opponents to die out.

Mainstreaming New Technologies

- In the US, widespread acceptance of viable new technologies requires excessive time
- New initiatives under the Strategic Highway Research Program II are to:
 - Identify technical and non-technical issues that preclude or delay widespread use of new technologies
 - Develop mitigation measures to overcome obstacles
SHRP2 Renewal Objective 1: Rapid Renewal of Transportation Facilities

SHRP2 Renewal Objective 2: Minimal Disruption of Traffic

SHRP2 Renewal Objective 3: Production of Long-Lived Facilities

R02. Geotechnical Solutions for Soil Improvement, Rapid Embankment Construction and Stabilization of the Pavement Working Platform

Anticipated Products

- Mitigation measures to overcome obstacles to more widespread use of soil improvement technologies
- Guidelines and methods for selection, design, QA/QC, costs, and specifications for soil improvement technologies applied to:
 - New embankments and roadways over unstable soils (Element 1)
 - Embankment widening (Element 2)
 - Stabilization of base, sub-base, and subgrade layers (Element 3)
RO2 Team

- Donald Bruce, Geosystems, L.P.
- Barry Christopher, Consultant
- Jim Collin, The Collin Group, Ltd.
- Gary Fick, Trinity Construction
- George Filz, Virginia Tech
- Jie Han, University of Kansas
- Jim Mitchell, Virginia Tech
- Vern Schaefer, Iowa State University (Prime Contractor)
- Dennis Turner, The Transtec Group
- Linbing Wang, Virginia Tech
- David White, Iowa State University
- Plus Advisory Board of DOT Representatives and Design/Build Contractors

Top 10 New Technologies

<table>
<thead>
<tr>
<th>Element 1. New embankments & roadways over unstable soils</th>
<th>Element 2. Embankment widening</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Column Supported Embankments</td>
<td>1. Column Supported Embankments</td>
</tr>
<tr>
<td>2. Geosynthetic Reinforced Platforms</td>
<td>2. Reinforced Soil Slopes</td>
</tr>
<tr>
<td>5. Stone Columns</td>
<td>5. Stone Columns</td>
</tr>
<tr>
<td>8. Vibrocompaction</td>
<td>8. Light Weight Fills</td>
</tr>
<tr>
<td>9. Rammed Aggregate Piers</td>
<td>9. Rammed Aggregate Piers</td>
</tr>
<tr>
<td>10. Light Weight Fills</td>
<td>- - Geotextile Tubes??</td>
</tr>
<tr>
<td>-- Geotextile Tubes ??</td>
<td></td>
</tr>
</tbody>
</table>

Top 10 New Technologies

<table>
<thead>
<tr>
<th>Element 1. New embankments & roadways over unstable soils</th>
<th>Element 2. Embankment widening</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Column Supported Embankments</td>
<td>1. Column Supported Embankments</td>
</tr>
<tr>
<td>2. Geosynthetic Reinforced Platforms</td>
<td>2. Reinforced Soil Slopes</td>
</tr>
<tr>
<td>5. Stone Columns</td>
<td>5. Stone Columns</td>
</tr>
<tr>
<td>8. Vibrocompaction</td>
<td>8. Light Weight Fills</td>
</tr>
<tr>
<td>9. Rammed Aggregate Piers</td>
<td>9. Rammed Aggregate Piers</td>
</tr>
<tr>
<td>10. Light Weight Fills</td>
<td>- - Geotextile Tubes??</td>
</tr>
<tr>
<td>-- Geotextile Tubes ??</td>
<td></td>
</tr>
</tbody>
</table>
Identified Technical Issues

<table>
<thead>
<tr>
<th></th>
<th>Lack of simple, comprehensive, reliable, and non-proprietary analysis and design procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Costs for design, construction, QC/QA, and/or maintenance</td>
</tr>
<tr>
<td>3</td>
<td>Construction time</td>
</tr>
<tr>
<td>4</td>
<td>Time from installation to full effectiveness</td>
</tr>
<tr>
<td>5</td>
<td>Lack of established engineering parameters or performance criteria</td>
</tr>
<tr>
<td>6</td>
<td>Lack of effective QA/QC procedures</td>
</tr>
<tr>
<td>7</td>
<td>Lack of easy-to-use tools for selecting technology</td>
</tr>
<tr>
<td>8</td>
<td>Technology immaturity</td>
</tr>
</tbody>
</table>

Categorized Bibliography (developed for each technology)

- Technology Overview
- Site Characterization
- Analysis Techniques
- Design Procedures
- Design Codes
- Construction Methods
- Construction Time
- Equipment/Contractors
- Construction Loads
- Contracting
- Construction Specs
- QC/QA
- Performance Criteria
- Monitoring
- Geotechnical Limitations
- Non-geotechnical Limitations
- Case History
- Environmental Impacts
- Initial Costs
- Life Cycle Costs
- Durability
- Reliability
Technical Issues Continued

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Need for a specific project delivery method</td>
</tr>
<tr>
<td>10</td>
<td>Lack of site characterization information</td>
</tr>
<tr>
<td>11</td>
<td>Performance uncertainty</td>
</tr>
<tr>
<td>12</td>
<td>Lack of long-term performance data</td>
</tr>
<tr>
<td>13</td>
<td>Environmental impacts of the technology</td>
</tr>
<tr>
<td>14</td>
<td>Lack of accessible case histories</td>
</tr>
<tr>
<td>15</td>
<td>Construction loads</td>
</tr>
<tr>
<td>16</td>
<td>Vibrations</td>
</tr>
<tr>
<td>17</td>
<td>Lack of suitable model specifications</td>
</tr>
</tbody>
</table>

QA/QC Measures for Each Technology

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Existing QC/QA procedures and measurement values</td>
</tr>
<tr>
<td></td>
<td>QC Material Related</td>
</tr>
<tr>
<td></td>
<td>Process Control</td>
</tr>
<tr>
<td></td>
<td>QA Material Related</td>
</tr>
<tr>
<td></td>
<td>Process Control</td>
</tr>
<tr>
<td>2</td>
<td>Performance Criteria Material Parameters</td>
</tr>
<tr>
<td></td>
<td>System Behavior</td>
</tr>
<tr>
<td>3</td>
<td>Emerging QC/QA procedures and measurement values</td>
</tr>
<tr>
<td></td>
<td>QC Material Related</td>
</tr>
<tr>
<td></td>
<td>Process Control</td>
</tr>
<tr>
<td></td>
<td>QA Material Related</td>
</tr>
<tr>
<td></td>
<td>Process Control</td>
</tr>
</tbody>
</table>
Task 4

- Identify and discuss the non-geotechnical project-specific parameters that constrain the full utilization of the application of the identified geotechnical materials and systems

Non-Technical Issues

<table>
<thead>
<tr>
<th></th>
<th>Lack of knowledge about the technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lack of organizational structure and policies to encourage use of new technologies</td>
</tr>
<tr>
<td>3</td>
<td>Absence of champion or technical leadership</td>
</tr>
<tr>
<td>4</td>
<td>Lack of qualified contractors, personnel, materials, and equipment</td>
</tr>
<tr>
<td>5</td>
<td>Liability</td>
</tr>
<tr>
<td>6</td>
<td>Proprietary product/process</td>
</tr>
<tr>
<td>7</td>
<td>External pressures on agency</td>
</tr>
<tr>
<td>8</td>
<td>Project conditions (ROW, geometry, scale, utilities, sequence, and impact on project construction time)</td>
</tr>
</tbody>
</table>
Non-Technical Issues

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Traffic management</td>
</tr>
<tr>
<td>10</td>
<td>Public impact</td>
</tr>
<tr>
<td>11</td>
<td>Existing market protection</td>
</tr>
<tr>
<td>12</td>
<td>Environmental impacts on the technology</td>
</tr>
<tr>
<td>13</td>
<td>Lack of profit or return on investment</td>
</tr>
<tr>
<td>14</td>
<td>Weather</td>
</tr>
<tr>
<td>15</td>
<td>Requirements for waste disposal</td>
</tr>
</tbody>
</table>

Mitigation Strategies

- Initially 10 Strategic Categories
 - Promotional
 - Collaboration
 1. Demonstration/R&D
 2. Specifications and Bidding
 3. Case History/Database
 4. Preparation of Manuals
 5. Internal SHRP
 6. Outreach
 7. Additional Supporting Information
 8. Back Analysis
Geotextile Tube Applications within SHRP II

- New embankments and roadways over unstable soils

- Embankment widening
Combined Technologies for Accelerated Construction

- Geotextile tubes and Electro Osmosis with Conductive Geotextiles
- Geotextile tubes and Vacuum Consolidation
- Hydraulically Constructed MSEW
 - requires facing system developed and improved analysis for pretensioned geotextiles

Geotubes and Vacuum Consolidation

- The technology is the process of combining hydraulic fill, vacuum consolidation (and possibly horizontal drains in the geotextile tube) to allow the use of both waste and non waste flowable materials and potentially expedite construction of embankments in some regions.
Geotubes and Electro Osmosis (e.g. with Electro Kinetic Geotextiles)

EK drainage bag Comparison of hydraulic & electrokinetic flow rates.

(Photo and figure from Jones, 2008, EuroGeo4)

Combining Technologies – Hydraulically Constructed MSEW
Workshop Recommendations for Geotextile Tubes (all applications)

- Review list of technical & nontechnical issues
 - Identify the degree of interference with widespread use (High, Medium, Low, None)
- Identify QA/QA measures
 - Existing for materials and processes, performance measures, and emerging measurement methods (e.g., smart geotextiles)
- Identify improvement requirements & methods for above
- Review mitigation strategies to improve widespread use
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Mainstreaming Geotextile Tube Implementation by Barry R. Christopher, PhD, PE.
Section 6.4

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- Presentation Title:
 Geotextile Tubes, Design, Applications and Case Histories

- Author:
 Jack Fowler, Ph.D., PE

- Affiliation and Contact Information:
 Geotec Associates
 5000 Lowery Road
 Vicksburg, MS 39180
 Ph. 601-636-5475
 jfowler@geotec.biz
 www.geotec.biz

Jointly Sponsored by:
- Mississippi State University Civil and Environmental Engineering Department
- Mississippi State University Office of Research
- US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
What are Geotextile Container Systems?

Geotextile Tubes

Geotextile Containers

Geotextile Bags

Typical Marine Installation
Panels Being Sewn

Manufactured by sewing multiple sheets of high-strength woven polyester or poly-propylene fabrics with high-strength seams.

Rolling Up Tube
Tube Design Plan View

GETube Design Software

Software is available to calculate fabric stresses during the critical time of filling and installation when the fill material is fluid.

Jack Fowler 601-636-5475
jfowler@geotec.biz
Typical Input Data for GETube Computer Program

- Material Bulk Specific Gravity, 1.6 to 2.0
- Factor of Safety, 5.0
- Circumference, 30, 45, and 60 ft
- Tensile Strength, 500 to 1000 lb/in
- Water Depth

GETube Input Parameters

Select any two Parameters and the others will be computed

- C = Circumference of the tube
- H = Height of the inflated tube
- T = Tensile Strength of the tube fabric
- V= Volume to which the tube is filled
- P = Excess Pressure above the top of tube
- R = Ratio of the fabric area to tube volume
Typical Output Data for 45 ft Cir Tube

Filling Methods

- Hydraulic
- Mechanical
- Positive Displacement
Hydraulic Dredges

- Suction Cutterhead Dredges
- Horizontal Cutterhead Dredges
- Submergible Pumps
- Eductor Dredges
- Positive Displacement Dredges

Mechanical Methods

- Mechanical placement of soft fluid mud using hoppers.
- Mechanical placement of sand into Tubes using hoppers and water flooding the hoppers.
- Mechanical conveyor belts and hoppers.
Installation Techniques

Overview of Various Dredging and Tube Filling Methods
Hopper Method

When fill material is not available at site, sand can be imported and installed using hopper methods.

Filling Tubes Underwater
Dredge Method

Most common method of filling Tubes.

Hand Dredge Method

Where large pumping equipment is not available, small hand held equipment can be used for filling Tubes.
Alternate Pumping Methods

Pumping methods can be modified to comply with local permits or site limitations.

Dry Fill Method

Mechanical means of filling Containers or Sand bags.
The Dry DREdge™

Pumps Material at In-situ Density With No Free Water
Pumping 70% Solids

Potential Dewatering Applications

- Fine Grained Dredged Material
- Municipal Sewage Sludge
- Agricultural Waste
- Pulp and Paper Mill Sludge
- Fly Ash
- Mining and Drilling Waste
- Industrial By-Product Waste
- Coal Sludge
CONTAINMENT AND DEWATERING

CONTAINMENT PHASE

DEWATERING PHASE
CONSOLIDATION AND DESICCATION

Gaillard Island, AL, 1991
Mobile District
Corps of Engineers Geotextile
Tubes filled with fine grained dredged material
30” Diameter Pipe, Dave Blackman
6’ suction cutterhead dredge

In-situ Slurry Density = 1.3 gr/ml
500 ft long tubes after filling

Slurry Filled Tube Design

Slurry Filled Tube and Dike Design
Slurry Filled Tubes

Tubes after one year
Dried slurry after one year

Vegetation growth after 30 days
CULKIN WATER DISTRICT
Dewatering Alum Sludge, Vicksburg, MS

Alum Sulfate Pond Desiccation Cracks

Culkin Water

Alum Sludge In Hanging Bag Test Showing Clear Water Effluent
Culkin Water Hanging Bag Test

Alum Sludge
Effluent
Water

Culkin Water After Filling Over 20 Times
Water Quality

Culkin Water Measuring Consolidation

Hanging Bag Test-Dewatering
Vicksburg, MS
Sewage Treatment Plant
Fine Grained Sediment

Sediment Height
Effluent Collection

Sampling Effluent
Settling Column and Hanging Bag Tests

<table>
<thead>
<tr>
<th>Test</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ft High Plexiglass Tube</td>
<td>Wet Bulk</td>
<td>Wet Bulk</td>
</tr>
<tr>
<td></td>
<td>Density or</td>
<td>Density or</td>
</tr>
<tr>
<td></td>
<td>Percent</td>
<td>Percent</td>
</tr>
<tr>
<td></td>
<td>Solids</td>
<td>Solids</td>
</tr>
<tr>
<td>5 ft Long Hanging Bag Test</td>
<td>Initial</td>
<td>Final</td>
</tr>
<tr>
<td></td>
<td>Percent</td>
<td>Percent</td>
</tr>
<tr>
<td></td>
<td>Solids</td>
<td>Solids</td>
</tr>
<tr>
<td></td>
<td>Effluent</td>
<td>Collection</td>
</tr>
<tr>
<td></td>
<td>Pans</td>
<td></td>
</tr>
</tbody>
</table>

Geotechnical Fill Material Properties Required for Estimating Consolidation, Bulking & Shrinkage Factors

- In Situ Density or Percent Solids or Moisture Content
- Density or Percent Solids or Moisture Content after dewatering (Target value)
- Specific Gravity of the Solids
- Gradation
- Atterberg Limits (LL, PL, & PI)
- Geotechnical Classification
- Settling Time
- Polymer Requirements
Shrinkage factor for DM in Tube after filling, dewatering, consolidation and desiccation drying. Bulking is inverse of Shrinkage factor.

\[
\text{Shrinkage Factor} = \frac{V_{dw}}{V_o} = \frac{e_{dw} + 1}{e_o + 1} = \frac{\gamma_0 - 1}{\gamma_{dw} - 1}
\]

where, \(e_{dw}, \gamma_{dw}\), and \(V_{dw}\) are values in Tube after dewatering, consolidation and desiccation drying.

Where in situ, \(e_o = \text{water content} \times \text{specific gravity}\)

Where \(\gamma_0 = \text{in situ density}\)

Example Calculation for the Shrinkage Factor

\[
\text{Shrinkage Factor} = \frac{V_{dw}}{V_o} = \frac{e_{dw} + 1}{e_o + 1} = \frac{\gamma_0 - 1}{\gamma_{dw} - 1}
\]

1.2 \(\) - 1.0

\[
\text{Shrinkage} = \frac{\gamma_0 - 1}{\gamma_{dw} - 1} = 0.5 \text{ or } 50\%
\]

or reduction 1.4 \(\) - 1.0

Factor
Bulking and Shrinkage Factors for Different Dredging Scenarios with Fine Grained Materials

- Bulking = 1.5 to 2.5
 - Hydraulic Dredge
 - CDF

- Bulking = 0.5 to 1.5 or Shrinkage
 - Hydraulic Dredge
 - Geotube

- Bulking = 0.5 to 1.0 or Shrinkage
 - Positive Displacement Dredge
 - Geotube

- Bulking = 0.5 to 1.0 or Shrinkage
 - Backhoe Dredge
 - Geotube

Tube 30 ft Circumference 5ft High
Soil Properties Before, During and After Dredging (Cont’d)

<table>
<thead>
<tr>
<th>Specific</th>
<th>Volume</th>
<th>Unit</th>
<th>Percent</th>
<th>Wet Bulk</th>
<th>Dry Bulk</th>
<th>Bulk Density</th>
<th>Water Bulk</th>
<th>Dry Bulk</th>
<th>Specific Gravity</th>
<th>Solids</th>
<th>Solids Density</th>
<th>Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>Content</td>
<td>Type</td>
<td>Grade</td>
<td>Water</td>
<td>Grain</td>
<td>Loam</td>
<td>Water</td>
<td>Grain</td>
<td>Loam</td>
<td>Water</td>
<td>Grain</td>
<td>Loam</td>
<td>Water</td>
</tr>
<tr>
<td>2.7</td>
<td>308</td>
<td>0.1</td>
<td>25</td>
<td>1,587</td>
<td>0.9</td>
<td>74.1</td>
<td>15.1</td>
<td>1,000</td>
<td>0.24</td>
<td>0.00</td>
<td>585</td>
<td>In situ</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>1150</td>
<td>31.1</td>
<td>8</td>
<td>1,075</td>
<td>8.6</td>
<td>85.7</td>
<td>13.3</td>
<td>1,000</td>
<td>0.07</td>
<td>1.00</td>
<td>585</td>
<td>Blasted to Place</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soil Properties After Dredging or Dredging in No CDF or Tubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percent</td>
</tr>
<tr>
<td>2.7</td>
</tr>
</tbody>
</table>

Dredging in CDF or Tubes

<table>
<thead>
<tr>
<th>Percent</th>
<th>Volume</th>
<th>Unit</th>
<th>Percent</th>
<th>Wet Bulk</th>
<th>Dry Bulk</th>
<th>Bulk Density</th>
<th>Water Bulk</th>
<th>Dry Bulk</th>
<th>Solids</th>
<th>Solids Density</th>
<th>Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>127</td>
<td>3.3</td>
<td>46</td>
<td>1,305</td>
<td>6.93</td>
<td>87.9</td>
<td>14.2</td>
<td>1,576</td>
<td>0.52</td>
<td>0.00</td>
<td>585</td>
<td>Target % in Tube</td>
</tr>
</tbody>
</table>

Dredge Production Rate into Tubes or CDF

<table>
<thead>
<tr>
<th>Percent</th>
<th>Volume</th>
<th>Unit</th>
<th>Percent</th>
<th>Wet Bulk</th>
<th>Dry Bulk</th>
<th>Bulk Density</th>
<th>Water Bulk</th>
<th>Dry Bulk</th>
<th>Solids</th>
<th>Solids Density</th>
<th>Depth</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7</td>
<td>127</td>
<td>3.3</td>
<td>46</td>
<td>1,305</td>
<td>6.93</td>
<td>87.9</td>
<td>14.2</td>
<td>1,576</td>
<td>0.52</td>
<td>0.00</td>
<td>585</td>
<td>Target % in Tube</td>
</tr>
</tbody>
</table>

Storage Area Required

<table>
<thead>
<tr>
<th>Tube</th>
<th>Tube</th>
<th>Lay Down</th>
<th>Required</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Circumference</td>
<td>Width</td>
<td>Per Tube</td>
<td>Area</td>
<td>Lay</td>
</tr>
<tr>
<td>ft</td>
<td>ft</td>
<td>sf</td>
<td>sf</td>
<td>Acre</td>
</tr>
<tr>
<td>15</td>
<td>7.5</td>
<td>750</td>
<td>11,813</td>
<td>0.27</td>
</tr>
<tr>
<td>30</td>
<td>12.5</td>
<td>1250</td>
<td>5,007</td>
<td>0.14</td>
</tr>
<tr>
<td>45</td>
<td>19</td>
<td>1900</td>
<td>4,275</td>
<td>0.10</td>
</tr>
<tr>
<td>60</td>
<td>26</td>
<td>2600</td>
<td>3,900</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Void Ratio vs Moisture Content

At 100% Saturation, \(e_0 = \frac{w_g}{\gamma} \), where typical in situ soils are %S = 50%, then \(w = 100% \) and \(e = 2.7 \)

If %S = 35%, then \(w = 200% \) and \(e = 8.1 \)

If at LL, %S = 65%, then \(w = 67% \) and \(e = 1.8 \)

If at PL, %S = 79%, then \(w = 43% \) and \(e = 1.2 \)

Atterberg Limits Plotted on the Specific Gravity Curve for Saturated Cohesive Soils

- Weight of water divided by the weight of solids
- Percent Moisture Content, \(w \)

New Orleans Sewage Treatment Plant
January, 2000-2004

Aerial View of Sludge Filled Tube 1/23/2002
MILLENNIUM PLANT

215 HP Nomad III Horizontal Cutterhead dredge pumping at a rate of 3,000 gpm at 10% solids.

MILLENNIUM PLANT

Tap water on left compared to effluent water on right immediately following collection from Geotextile Tube
Millennium Plant
Titanium Sulfate Dioxide 65% Solids

Wellston Ohio Coal Sludge
30 ft Cir 100 ft Long Geotextile tube Showing Elevation
Century Mine Hanging Bag Test

Water effluent quality very clear with polymers

Century Mine Hanging Bag Test

Slurry at 63.5% Solids second day of drainage with polymers
20 CY Roll Off Box

Wooden Pallets for Drainage
20 ft Long Bag Prior to Filling

Filling Roll Off Box Bag
Roll Box Bag Filled

Effluent from Roll Off Box
5 CY Roll Off Box Bag

20 CY Roll Off Box Filled
Geosynthetic Reinforced Inflatable Tube Simulator (GRITS)
Developed by John B. Palmerton (Deceased Spring 2006)
Friction angle between tubes and base = 18 degrees
Friction angle between tubes also = 18 degrees.
Stacked Tube Right Method

Filling Stacked Tubes
Stacked Tubes, Fly Ash

Marine Applications
- Core of a sand dune
- Creation of Wetlands
- Core of Rip Rap Breakwaters
- Core of Rip Rap Jetties
- Underwater Structures
- Diversion Dikes
- Dredge Material Containment

Beneficial Uses Of Dredged Material Filled Geotextile Tubes
Coastal and Riverine Applications
Shoreline Protection

View of Tubes #1 & #2
Shoreline Protection

Tube # 7

Shoreline Protection

Tubes # 8 & # 9
Offshore Breakwater Protection, Amwaj Island

Tube During Filling, Amwaj Is
Outside Perimeter Design, Amwaj, Island

Geotubes in Island Perimeter

- Rocks: 300 to 1000 kg in 2 layers
- MSL - 0.5 m
- Geotube C = 13.0 m
- Hydraulic Fill 2nd Layer
- Hydraulic Fill 1st Layer

Amway Island
Bolivar Peninsula, Texas Coast

18,000 LIN. FT. Of Tube Protecting Shoreline

Installed 2000

Coastal Beach Application of Polyester Geotextile Tubes

Bolivar Peninsula, TX

Note the nonwoven shroud that covers the exposed portion of the Tube. The shroud is for increased UV protection.
Bolivar Peninsula, TX

Tube sections were joined to create a relatively even elevation for the total length or the installation.

Bolivar Peninsula, TX

Backhoe places sand to cover the Tube and create the new sand dune.
Bolivar Peninsula, TX

Tubes are buried in the dune to act as monolithic structure to combat destructive wave energy.

Bolivar Peninsula, TX

Tube was exposed during Tropical Storm Allison, June 2001.
Bolivar Peninsula, TX

Tube was exposed during Tropical Storm Allison, June 2001.

Bolivar Peninsula, TX

The Tube installation protected structures along the coast line during the storm saving the community millions of dollars in repair.
Bolivar Peninsula, TX

The Tube project on Bolivar Peninsula was so successful that it has been extended another 15,000 linear ft.

Bolivar Beach Tubes after Ike
Bolivar Tubes after Ike

Bolivar Beach Tube after Ike
Crystal Beach before and after Hurricane Ike

Pirates Beach after Ike
Fine Grained Volcanic Sand

Aleutian Islands
Nelson Lagoon, AK
2005

Shoreline Erosion on Nelson Lagoon
Placing Scour Apron and Scour Tubes

Tube during placement
Tube after placement

Filling hopper with front end loader
Water exiting the tube

Filling Geotextile Tube at Low Tide

Land Reclamation on the North Sea in the Netherlands
Filling Geotextile Tube at High Tide

Parallel Geotextile Tubes in Perimeter Dikes
Sand Fill behind Geotextile Tube Dike

Container Placement

Geotextile Containers For Below Water Scour Protection
Port Of Rotterdam, The Netherlands

GEOCONTAINER

THE PROBLEM

THE SOLUTION

POSITIONING PRINCIPLE

River Old Moos

Containers used: 250 units
Cost used: 96,000 lammers
Cost: 30-40% lower than traditional methods

NICOLON
Sand Bag and Container Application to Control River Sediments

Red Eye Crossing, Mississippi River
Baton Rouge, LA
1993 to 1994
Three bag dikes and three container dikes
Filling Sand Bags

Instrumented sand bag
Sand Bag Placement

Dredged material hydraulically or mechanically placed in geocontainers

Geotextile liners

Split bottom barge

Geotextile liner folded over and sewn

Split bottom hull opens and drops geocontainers

Container intact on bottom

Bottom (final destination)
Filling Containers

Sewing Containers Closed
Placement of Containers

Placement of geotextile containers
Geocontainers Model Tests

John Palmerton
601-638-3334
jbpalmer@bellsouth.net

Split-Hull Scow Container Drop Simulations
Split-Hull Scow Container Drop Simulations

INPUT
- Water depth = 12.00 ft
- Speed from = 0.00 deg
- Scoop from = 0.00 deg
- Bag density = 29 gr/cm³
- Current = 0.00 fps
- Flooded (pumped) = 0.00
- Drag factor = 60
- Tension at stern = 0.00 lbs

OUTPUT
- Time = 67.85 sec
- Current = 0.00 fps
- Bag area = 0.00 sq ft
- Bag volume = 0.00 ft³
- Bag height = 0.00 ft
- Bag bottom = 0.00 ft
- Bird drag = 0.00
- Mass = 0.00 lbs
- Instantaneous Force = 0.00 lbs
Split-Hull Scow Container Drop Simulations

INPUT
- Water level: 12.00 ft
- Speed: 30.00 deg
- Drop from: 0.05 deg
- Bag density: 1.86 g/cc
- Bag size: 15.00 lb
- Current velocity: 0.00 fps
- Trip distance: 7.00 ft
- Drop time: 0.00 sec
- Drag time: 0.00
- Water depth: 200.00 lb/

OUTPUT
- Time = 67.12 sec
- Stack = 145.00 lb
- Bag xmp = 17.00 in
- Bag ymp = 60.00 in
- Bag xmp = 42.02 in
- Bag ymp = 47.8 ft
- Bag bottom = 45.40 ft
- Stack xmp = 0.02 ft
- Stack xmp = 0.02 ft
- Stack xmp = 0.02 ft/
- Stack ymp = 0.02 ft/

Red Eye Crossing Containers After 6 years
Baton Rouge, LA
October 1999
Red Eye Crossing Bags After 6 years
Baton Rouge, LA October 1999

Bags and Vegetation
Note influence of Bags and Containers

Note influence of Soft Dikes
Dredged Material Disposal Area
Used As A Dike Core For Land Reclamation

Naviduct
IJssel, The Netherlands
Geotextile Tubes

The Naviduct Project
Large scale Rip Rap test covering Tubes

Considerable amount of fill material has escaped from failed polyester tube
Close up view of polyester tube failed area near a fill port - MD yarns failed due to UV and hydrolysis degradation
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Geotextile Tubes, Design, Applications and Case Histories by Jack Fowler, PhD, PE.
Section 6.5

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- **Presentation Title:**
 Stability of Geotubes and Research Needs

- **Authors:**
 Mohammed A. Gabr(Presenter)1, Mahdi Khalilzad1, Margery F. Overton1, and Billy Edge2

- **Affiliation and Contact Information:**
 1Department of Civil, Construction and Environmental Engineering, North Carolina State Univ,
 Email: gabr@eos.ncsu.edu
 2Director, Reta and Bill Haynes '46 Coastal Engineering Laboratory, Department of Civil Engineering, Texas A&M University,
 Email: b-edge@tamu.edu

Jointly Sponsored by:
• Mississippi State University Civil and Environmental Engineering Department
• Mississippi State University Office of Research
• US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Outline

1. Introduction
2. Approaches in literature
3. Analysis of Geotubes at Galveston
4. Behavior of Geotubes at Galveston
5. Summary

Recent Storms

Severe beach and dune erosion along the Gulf shoreline of the southeast Texas coast

- Tropical Storm Fay, September 2002
- Tropical Storm Allison, June 2001
- Hurricane Claudette, July 2003

Significant damage to the geotubes along the west Galveston beachfront

Not significant storms to assess geotube performance

Reference:

Notable Storms (1996-2006)

<table>
<thead>
<tr>
<th>Storm</th>
<th>Date</th>
<th>Peak Surge at Observation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC Josephine</td>
<td>October 1996</td>
<td>+1.2</td>
<td>Daniel J. Heilman, et al. (2008), Interaction of Shore-Parallel Geotextile Tubes and Beaches along the Upper Texas Coast, US ARMY CORPS OF ENGINEERS, ERDC/CHL CHETN-II-51</td>
</tr>
<tr>
<td>TC Charley</td>
<td>August 1996</td>
<td>+0.6</td>
<td></td>
</tr>
<tr>
<td>TS Frances</td>
<td>September 1998</td>
<td>+1.0</td>
<td></td>
</tr>
<tr>
<td>TU Allison</td>
<td>June 2001</td>
<td>+1.1</td>
<td></td>
</tr>
<tr>
<td>TU Fal</td>
<td>September 2002</td>
<td>+1.2</td>
<td></td>
</tr>
<tr>
<td>Hu/Georges</td>
<td>September 2002</td>
<td>+1.0</td>
<td></td>
</tr>
<tr>
<td>Hu/Lili</td>
<td>October 2002</td>
<td>+1.5</td>
<td></td>
</tr>
<tr>
<td>Hu/Carlisle</td>
<td>July 2003</td>
<td>+2.1</td>
<td></td>
</tr>
<tr>
<td>TC Dora</td>
<td>September 2001</td>
<td>+1.8</td>
<td></td>
</tr>
<tr>
<td>TC Ivan</td>
<td>September 2004</td>
<td>+1.1</td>
<td></td>
</tr>
<tr>
<td>Hu/Dennis</td>
<td>July 2005</td>
<td>+0.8</td>
<td></td>
</tr>
<tr>
<td>Hu/Katrina</td>
<td>August 2005</td>
<td>+1.0</td>
<td></td>
</tr>
<tr>
<td>Hu/Rita</td>
<td>September 2005</td>
<td>+1.2</td>
<td></td>
</tr>
<tr>
<td>Unnamed Storm</td>
<td>October 2005</td>
<td>+1.4</td>
<td></td>
</tr>
</tbody>
</table>

* NOTE: TC denotes tropical storm; Hu denotes hurricane.

Recent Storms

Peak Surge : 3.54 m

September 2008 IKE Storm

Reference:
- Website of National Weather Service Forecast Office
Geotubes at southeast Texas coast:

- Oval cross section of 12 ft made of geotextile fabric
- Rest on a fabric scour apron that has sediment-filled anchor tubes along each edge
- Placed in a trench parallel to shore along the back beach or foredunes
- Nine geotube projects cover a total of 7.6 mi of shoreline

Reference:
- Webpage of Bureau of Economic Geology, Coastal Studies Group

Geotubes at Bolivar Peninsula:

- 30 ft Circumference, 250 ft long geotextile tubes
- Main body: Mirafi® GT 1000
- Placed on a scour apron with anchor tubes made of Mirafi® GT 500
- Mirafi® 1120 N at the top of the geotube as a shroud for UV protection

Reference:
- TencateWebpage
Cross section of a geotube installation:

Reference:

Parameters should be considered:
- Physical properties of filling materials and geotextile
- Internal stability: mechanical properties of geotextile, shape, and tension force
 - During filling
 - During performance
- Durability
- External hydrodynamical stability
Internal Stability: Tension in membrane

(Leshchinsky et al., 1996)

Assumptions:
- Plain Strain State (Long Tube)
- Thin, flexible shell with negligible unit weight
- Hydrostatic state of stress inside the tube
- No shear stress between geosynthetic and slurry

Numerical solution of differential equations yields the relationship between T, P_0, h and $y(x)$

Computer program GeoCoPS (Leshchinsky and Leshchinsky, 1996) was developed to compute geometry of tube $y(x)$ and two of three parameters (T, h, and P_0)

Reference:

Tension in membrane (Plaut et al., 1998)

Assumptions:
- Two Dimensional solution (Plain Strain)
- Inextensible membrane with negligible weight
- Rest on a rigid, horizontal foundation
- Incompressible fluid inside the tube

Solution for 3 cases:
- Geotube on the rigid foundation
- Geotube on the deformable foundation
- Geotube with water on one side

Reference:
Types of Wave Breaking

Hurricane IKE:
For pleasure pier:
Assuming:
Average Period: 8.2 sec
$H_s = 3.54 \text{ m}$
$\xi = \alpha$

<table>
<thead>
<tr>
<th>Slope angle α</th>
<th>ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5°</td>
<td>0.47</td>
</tr>
<tr>
<td>10°</td>
<td>0.96</td>
</tr>
<tr>
<td>20°</td>
<td>1.98</td>
</tr>
</tbody>
</table>

Reference:
+ Website of NOAA

External Stability; Hydrodynamic Pressure (P_w):

Hiroi (1920)

$$P_w = 1.5 \times \gamma_0 \times H_{1/3}$$

γ_0: Unit weight of sea water
$H_{1/3}$: Significant wave height

Liu (1981)

$$\beta = \frac{F}{\gamma H_b^2}$$

in terms of $\frac{d_s}{H_b}$ and $\frac{d_l}{h}$

β: Impact force coefficient

Reference:
Galveston Geotube

- Circumference = 9.9 m
- Peak water level = 3.8 m NAVD
- MSL = NAVD + 0.15 m
- Bottom of Geotube at 1.5 m
- Water Head on Geotube = 2.15 m
- Break Wave Height = 1.67 m

Assumptions:
- a = 2b
- Contact width is 80% of the long diameter.

Reference:
- Website of National Weather Service Forecast Office

External Stability

- Sliding: S.F. ~ 0.8
- Overturning: S.F. ~ 1.5
- Bearing capacity:
 - Normal to High Water Condition: S.F. = 3.0 ~ 1.5
 - Seepage and Quick Conditions
 - Note: Not accounting the drag forces
COPRI: Ike Field Investigation to Document Perishable Data: October 3, 2008

Billy Edge, Texas A&M – Team Leader
Spencer Rogers, North Carolina Sea Grant - Team Leader
Robert G. Dean, University of Florida
James Kaihatu, Texas A&M
Lesley Ewing, California Coastal Commission
Mandy Loeffler, Moffatt & Nichol, Houston
Margery Overton, North Carolina State University
Kojiro Suzuki, Port and Airport Research Institute, Japan
Paul Work, Georgia Tech
Garry Gregory, Gregory Geotechnical - ASCE Geo Institute Liaison
Donald Stauble, USACE/ERDC/CHL
Jeffrey Waters, USACE/ERDC/CHL
Eddie Wiggins, USACE/JALBTCX
Marie Horgan Garrett, Coastal Solutions, Inc.

Consequences:

- Damage to the coastal structure
- Shoreline recession due to erosion
 - Surge and flooding also from the bay side
 - Elevation of shore protection Measures
 - Geotube barriers: overtopped, rolled
 - Some flattened and buried fully or partly

http://content.coprinstitute.org/HurricaneKteam.html
3. Behavior of Geotubes at Galveston:

Reference:

http://ngs.woc.noaa.gov/ike/IMAGES/ike_c25882224.htm

Reference:

http://ngs.woc.noaa.gov/ike/IMAGES/ike_c25882150.htm
Summary

- Geotubes provided protection for the landward infrastructures
- Lack of a well documented design process for Geotubes including characterization of storm loading
- Consider internal and external stability
- Consider the relative flexibility of the Geotube and underlying foundation in external and internal stability
- Consider possible Scour on landside due to trapping and scour at base
- Consider system approach for engineered “fuses” to minimize landside scour
References

References

References

References

References

2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Stability of Geotubes and Research Needs presented by Mohammed A. Gabr, PhD.
Section 6.6

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

Presentation Title:

Use of Poor Quality Geo-Material in Geotextile Tubes for Structural Applications

Author:

Douglas A. Gaffney, P.E.

Affiliation and Contact Information:

Ocean and Coastal Consultants, Inc.
dgaffney@ocean-coastal.com
(856) 248-1200

Jointly Sponsored by:

• Mississippi State University Civil and Environmental Engineering Department
• Mississippi State University Office of Research
• US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Poor Quality Geo-Materials

- Fine-grained (silts and clays)
- Often cohesive
- Low bearing capacity
- Critical Shear Velocity
 - Related to % Water content and grain size

Velocity to Grain Size Relationship

Source: Kennett, 1982
Geotextile Tubes

- Testing
 - Bench Scale (mud balance - % solids by weight)
 - Hanging Bag (decant flow rate, TSS, vane shear)

- Structures to prevent erosion
 - Scour aprons
 - Tubes

- Shear Stress
 - Waves - loss of material due to piping
 - Currents

Mud Balance
Hanging Bag

Erosion Control
Drakes Creek Ecosystem Restoration Project

- Environmental Benefits
 - Cooler, deeper water
 - Discourage waterfowl at riverbank
 - Wetland habitat
 - Upland habitat
 - Minimize soil erosion
 - Gravel beds (fish habitat)
 - Return native species
USACE Drakes Creek Ecosystem Restoration Project, Hendersonville, TN

Drakes Creek Ecosystem Restoration Project

- 22,000 cubic yards dredged material
 - Sandy silts and clays
 - Required dewatering area
- 2,100 linear feet dike
 - 13 acre sub-embayment
 - 8,000 cubic yards of stone required
 - Shallow water depths
Geotechnical Borings

Typical Geotechnical Results

PROJECT DRAKES CREEK BORING D-9

Top EL. 445.2

0-7

CL BR SDY CLAY, V SD

SC BR CVLY CLY SAND, V LSE

5-

LH GR-BR SDY CLAY

TR 439.9

MOISTURE CONTENT (%)
Drakes Creek Ecosystem Restoration Project

- **Tubes**
 - 45-ft circumference, woven polyester
 - Woven polypropylene scour aprons
 - Nonwoven UV shroud
 - Filled with poor quality sandy clay, organics and gravel.

Dredged Material
Dredged Material

Mechanical Dredge
Construction Equipment

Geotextile Dispenser
Scour Apron

Installation 2000
Butt Joints

Installation 2000
Installation 2000
Connection to Upland

Wildlife
Dike

Vegetation
Phase II

- Continued dredging and placement into the containment area
- Proposed planting of the tube dike

Drakes Creek Project 2008

Source: Live Search Maps
Nyack Municipal Marina
Western Bank of the Hudson River

Dredging Project Goals

- Remove 1,800 CY of fine-grained, Hudson River sediment
- Quickly and Cost-effectively
- Populated setting
- Dewater the slurry - alternatives considered
 - Open air disposal
 - Filter presses
 - Geotextile tubes
Dredging

Tube Filling
Polymeric Conditioning

- Chemical feed pump
- Polydialymethyl / ammonium chloride
- Cationic Polymer
- Initial dosage rate 20 gallons per hour (approximately 167 ppm)
- Static mixer

Enhanced Settling
TESTING

- Percent Solids
 - Initial – 10 – 15% solids
 - After 1 week – 25 - 30% solids
 - After 2 months – 50% solids
- Specific Gravity of dry solids – 2.45
- Classification
 - MH elastic silt

Testing

- Paint Filter Test
 - EPA method 9095a
 - Determines whether a landfill considers the material to be dry
Dewatering Results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube 1</td>
<td>Passed</td>
<td></td>
<td>56</td>
</tr>
<tr>
<td>Tube 2</td>
<td>Passed</td>
<td></td>
<td>47</td>
</tr>
<tr>
<td>Tube 3</td>
<td>Passed</td>
<td></td>
<td>54</td>
</tr>
<tr>
<td>Tube 4</td>
<td>Passed</td>
<td>29.8</td>
<td>55</td>
</tr>
<tr>
<td>Tube 5</td>
<td>Passed</td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>Tube 6</td>
<td>Passed</td>
<td>27.5 - lower, 24.9 - upper</td>
<td>49</td>
</tr>
</tbody>
</table>

Dredged Material Properties

![Graph showing the relationship between liquid limit LL (%) and plasticity index P (%)](image)
Dredged material is dry, now what?

- Truck to a landfill
 - Costly tipping fees and transportation
- Beneficial Use
 - Poor geotechnical properties
 - CBR – 3.43
 - Quick lime amendment
 - Hydrating excess moisture
 - Make soil more compactable
 - Increase shear strength

Lime Amendment

- Moisture content in September – 96.8%
- Optimum moisture content – 42%
Lime Amendment

➢ After two hours curing, 10% lime addition resulted in 67% increase in shear strength
➢ After two hours curing, 15% lime addition resulted in doubling of shear strength
➢ Quick lime or masonry lime

Parking Lot Design

- Parking Lot in town needed to be regraded for better water flow
- Requires fill material
- Dredged material would be sufficient quantity for subbase fill
- Requires approximately 146,000 pounds of lime (approximately $17,000)
Conclusions

- Geotextile tubes used as the main structural component for ecosystem restoration
 - Beneficial use of poor quality dredged material
 - Dramatically decrease erodability
- Geotextile tubes provide cost effective and rapid dewatering of poor quality material
 - With or without polymers

References

- USACE "Drakes Creek Section 1135 Ecosystem Restoration Report" Nashville District, 1999.
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Use of Poor Quality Geo-Material in Geotextile Tubes for Structural Applications by Douglas A. Gaffney, P.E.
Section 6.7
2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- **Presentation Title:**
 Chemical Treatment of Dredged Solids

- **Author:**
 Dewey W. Hunter

- **Affiliation and Contact Information:**
 NAFTA Dredging Ciba Corporation
 (813) 767-2829
dewey.hunter@ciba.com

Jointly Sponsored by:
- Mississippi State University Civil and Environmental Engineering Department
- Mississippi State University Office of Research
- US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Ciba Corporation – Key Facts

- Corp. HQ in Basel, Switzerland
- U.S. Corp. HQ in Tarrytown, New York
- Our products and services are sold in over 120 countries on all continents.
- We employ 14,000 people
- 60 production sites in 23 countries.
- 22 R&D centers in 11 countries.
- Sales 6.0+ billion CHF (5.0 billion USD) in three major market areas: Europe, the Americas and Asia-Pacific.
- The company's roots go back to 1758 when J.R. Geigy founded the first chemical company in Basel, trading in chemicals and dyes.

Ciba History

- Ciba
 - Founded in 1884
 - 1970
 - Ciba-Geigy
 - J. R. Geigy
 - Founded in 1758
 - 1996
 - Novartis
 - Sandoz Pharm.
- Ciba Corporation
 - 2007
 - Textile Effects
 - 2006
 - Industrial Polymers
 - 2000
 - Performance Polymers
 - 1998
 - Allied Colloids
 - 1997
 - Ciba Specialty Chemicals
Ciba Corporation Business Structure

Business Segments:
- Plastic Additives
- Water & Paper Treatment
- Coating Effects

Business Lines:
- Paper Treatment
- Water Treatment
- Detergents & Hygiene

Global Industry Market Centers:
- U.S. HQ in Suffolk, VA
 - Municipal Potable Water Clarification, Thickening, and Dewatering
 - Municipal Wastewater Clarification, Thickening, and Dewatering
 - Industrial Process Water Clarification, Thickening, Dewatering, and Wastewater Treatment
 - Dredging Clarification, Thickening, and Dewatering

BL Water & Paper Treatment Sites:
- BL Paper
- BL Water Treatment
- BL Detergents & Hygiene
PIANC Classification of Soils

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Particle Size – microns (10^4 meters)</th>
<th>Sieve Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boulders</td>
<td>> 200,000</td>
<td>6 in</td>
</tr>
<tr>
<td>Cobbles</td>
<td>60,000 – 200,000</td>
<td>3 – 6 in</td>
</tr>
<tr>
<td>Gravels - Coarse</td>
<td>20,000 – 60,000</td>
<td>½ - 3 in</td>
</tr>
<tr>
<td>- Medium</td>
<td>6,000 – 20,000</td>
<td>¼ - ¾ in</td>
</tr>
<tr>
<td>- Fine</td>
<td>2,000 – 6,000</td>
<td># 7 Sieve – ¾ in</td>
</tr>
<tr>
<td>Sands - Coarse</td>
<td>600 – 2,000</td>
<td># 25 - # 7</td>
</tr>
<tr>
<td>- Medium</td>
<td>200 – 600</td>
<td># 72 - # 25</td>
</tr>
<tr>
<td>- Fine</td>
<td>60 – 200</td>
<td># 200 - # 72</td>
</tr>
<tr>
<td>Silts - Coarse</td>
<td>20 – 60</td>
<td>Passing # 200</td>
</tr>
<tr>
<td>- Medium</td>
<td>6 – 20</td>
<td>“</td>
</tr>
<tr>
<td>- Fine</td>
<td>2 – 6</td>
<td>“</td>
</tr>
<tr>
<td>Clays</td>
<td>< 2</td>
<td>“</td>
</tr>
</tbody>
</table>

Dredging “Fines” < 75 microns; particles passing thru 200 mesh sieve
Cohesive Sediments < 62.5 microns
Suspended Solids < 45 microns
Colloidal Particles 0.001 – 1.0 microns

Why Use Chemical Treatment?

- **To Treat Problematic Sediments**
 - Particles < 75 microns ("fines")
 - Contaminated sediments

- **To Enhance Volume Reduction**

- **To Improve Process Efficiencies**
 - Higher solids loading (wt. of solids/unit time)
 - Improved solids-liquid separation in less time
 - Consolidate
 - Thicken
 - Dewater
 - Higher hydraulic loading (gall./unit time)
 - Create cleaner discharge water
 - Supernatant
 - Filtrate
 - Centrate
 - Higher solids removal efficiency (capture rate)
 - [(solids in – solids out)/solids in] x 100%

- **To Provide Overall Project Economy**
 - Cost-benefit analysis

Proven Technology for Water/Wastewater Treatment
Chemical Polymer Types (Organic)

<table>
<thead>
<tr>
<th>NATURAL</th>
<th>SYNTHETIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Proteins</td>
<td>• Plastics</td>
</tr>
<tr>
<td>• Gums</td>
<td>Polyethylene</td>
</tr>
<tr>
<td>• Starch</td>
<td>PVC</td>
</tr>
<tr>
<td>• Cellulose</td>
<td>Rubbers</td>
</tr>
<tr>
<td></td>
<td>Polybutadiene</td>
</tr>
<tr>
<td></td>
<td>• Water Soluble</td>
</tr>
<tr>
<td></td>
<td>Polyacrylamide</td>
</tr>
<tr>
<td></td>
<td>PolyDMDAAC</td>
</tr>
<tr>
<td></td>
<td>Polyamine</td>
</tr>
</tbody>
</table>

What are Polymers?

- Synthetic (man made) chemicals
- Organic (carbon based)
 - Long chains (macromolecules) of single monomer units via polymerization; longer chain ~ higher relative molecular weight
- Water soluble
- Polyelectrolytes
- Used extensively
 - Sold in U.S. since 1950’s
 - Municipal potable H2O and wastewater, industrial process and wastewater, mineral tailings, oil recovery, aggregate washing, soil conditioning
What Are Polymers Made Of?

<table>
<thead>
<tr>
<th>Greek</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLY MEROS</td>
<td>MANY PARTS</td>
</tr>
</tbody>
</table>

Large Molecule Made Up Of Simple Repeating Chemical Units of Carbon (Monomers)

ACRYLAMIDE (Monomer)

```
\[
\begin{align*}
    \text{CH}_2&=\text{CH} & & + & & \text{Chemical Initiators} \\
    \| & \text{NH}_2 & & & \| & \text{O} \\
    \| & \text{O} & & & & \ \\
\end{align*}
\]
```

FREE RADICAL

```
\[
\begin{align*}
    \text{CH}_2&=\text{CH}^{*} & & + & & \text{ACRYLAMIDE} \\
    \| & \text{NH}_2 & & & \| & \text{O} \\
    \| & \text{O} & & & & \ \\
\end{align*}
\]
```

ACRYLAMIDE

```
\[
\begin{align*}
    \text{CH}_2&=\text{CH} & & & + & & \text{ACRYLAMIDE} \\
    \| & \text{NH}_2 & & & \| & \text{O} \\
    \| & \text{O} & & & & \ \\
\end{align*}
\]
```

POLYACRYLAMIDE

```
\[
\begin{align*}
    \text{CH}_2&=\text{CH} & & & + & & \text{POLYACRYLAMIDE} \\
    \| & \text{NH}_2 & & & \| & \text{O} \\
    \| & \text{O} & & & & \ \\
\end{align*}
\]
```

Polymers in Dredging

- Used in U.S. dredging more than 30 years
 - USACE tech. reports and engineering manuals
- Low usage vs. total cubic yardage
- Upland disposal/treatment/dewatering
- Fine grained sediments
 - Silts and clays (organic or inorganic)
 - High surface area-to-mass ratio
 - Particles attract and exhibit electrical charge
 - Colloidal suspensions
- Highly organic soils or substrates
- Contaminated sediments
Chemical Characteristics of Polymers

- **Charge Density**
 - Low
 - Medium
 - High

- **Molecular Weight**
 - Low
 - Medium
 - High

Organic Coagulants
- (poly DMDAAC, polyamine)

Inorganic Coagulants
- (lime, alum, iron salts)

Dispersants
- (polyacrylate acid)

Flocculants
- (Polyacrylamide)

Chemical Treatment Options - Examples

<table>
<thead>
<tr>
<th>Addition #1</th>
<th>Addition #2</th>
<th>Addition #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cationic Organic Coagulant</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cationic Inorganic Coagulant</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cationic Flocculant</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Anionic Flocculant</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Cationic Organic Coagulant</td>
<td>Anionic Flocculant</td>
<td>N/A</td>
</tr>
<tr>
<td>Cationic Inorganic Coagulant</td>
<td>Anionic Flocculant</td>
<td>N/A</td>
</tr>
<tr>
<td>Anionic Flocculant</td>
<td>Cationic Flocculant</td>
<td>N/A</td>
</tr>
<tr>
<td>Cationic Inorganic Coagulant</td>
<td>Cationic Organic Coagulant</td>
<td>Anionic Flocculant</td>
</tr>
</tbody>
</table>
STEP 1: COAGULATION

Coagulants (Organic and Inorganic)
- Low molecular weight
- Very high cationic (+) charge density

Coagulation
- Destabilize repulsion between particles
- Allow particles to agglomerate
- Produce small “floc” that may settle

Coagulation

SUSPENSION
Like-charged particles repel one another

ATTRACTION
Van der Waals attraction predominates
STEP 2: FLOCCULATION

Flocculants (Anionic, Cationic, Nonionic)
- Wide molecular weight range; higher than coagulants
- Wide charge density range
- Destabilize repulsion between particles; not as well as coagulants

Flocculation
- Allows agglomeration to occur; more effective than coagulants
- Size of molecule allows for “netting” action
- Produces large “floc” that tends to readily separate from water and settle

BRIDGING FLOCCULATION

High MW Flocculant

Initial Adsorption Onto Particle

Flocculation
Chemical Usage Considerations for Dredging:

• **Project Scope**
 – In-situ cubic yards (volume), % Total Solids (by weight), Dry Tons Solids (weight)
 – Project duration and hrs/day operation
 – Discharge water back into waterway?
 – Seasonal effects?

• **Aquatic Toxicity**
 – Ecotox and/or NSF data for all chemicals (MSDS)
 – Contact state or local agencies for requirements
 – Permits

• **Substrate Testing**
 – Representative core sampling data (In-situ % Total Solids)
 – Historical test or project data
 – Chemical(s) selection (charge & mol. wt. demand)
 – Dosage requirement (ppm = mg/L, or in lbs. chemical/dry ton solids)

• **Physical Form of Chemical**
 – Dry, oil-based liquid, water-based solution
 – Dictates safety, handling, storage, and makedown

• **Associated Equipment**
 – Chemical handling, storage, makedown, metering, monitoring
 – Electrical and water supply

• **Applications Knowledge and Expertise**
 – In-house consultant or chemical supplier with experience

• **Cost-Benefit Analysis**
 – Costs of chemical usage vs. benefits
 – Overall operating costs
 – Costs of various options

• **Project Budgeting**
 – Consider and include all costs up front, not as an add-on later
Containerized Liquid Polymer Makedown System

Dimensions: 20’x8’x8’
Gross Weight: 8,000 lbs.
Water Needs: 100 gpm @ 40 psi
Power Needs: 100 kW generator
Challenges for the SERRI-DHS Application

- Following a disaster:
 - Clean water supply for polymer makedown
 - Availability of containerized polymer makedown system(s)
 - Availability of sufficient polymer supply
 - Correct polymer selection and dosage levels required
 - Salt water vs. freshwater inundation
 - Transport/placement into target area
 - Regulatory or ecotox issues
CHARACTERISTIC

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>7.5</td>
</tr>
<tr>
<td>Physical Characteristics</td>
<td>Dark Brown Color</td>
</tr>
<tr>
<td>Dry Solids</td>
<td>9.16%</td>
</tr>
<tr>
<td>Specific Gravity (of slurry)</td>
<td>1.079</td>
</tr>
<tr>
<td>Particle Size</td>
<td></td>
</tr>
<tr>
<td>- d_{10}</td>
<td>45.4um</td>
</tr>
<tr>
<td>- d_{50}</td>
<td>19.87um</td>
</tr>
<tr>
<td>- d_{90}</td>
<td>104.2um</td>
</tr>
<tr>
<td>Mean</td>
<td>14.51um</td>
</tr>
<tr>
<td>Surface Area</td>
<td>10317cm²/ml</td>
</tr>
<tr>
<td>Organics & Volatiles</td>
<td>14.62%</td>
</tr>
</tbody>
</table>

- Substrate: Organic clay sample
- Location: New Orleans, LA
- Slurry Solids: ~6.2% Total Solids (wt/wt)
- Polymer Dosage: ~3.0 lbs. polymer / dry ton solids

Polymer Dosage relates to approximately:
- 1.0 lb. of polymer for every 1,227.90 gallons of 6.2% T.S. slurry
- 1.0 lb. of polymer for every 6.08 cubic yards of 6.2% T.S. slurry

GDT Pillow Test Results – Oct. 27, 2008

- Substrate: Organic clay sample
- Location: New Orleans, LA
- Slurry Solids: 11.51% Total Solids (wt/wt)
- Polymer Dosage: 3.0 lbs. polymer / dry ton solids

Results Obtained After 2 Hours

<table>
<thead>
<tr>
<th>Sample</th>
<th>Cake Depth* (cm)</th>
<th>Dry Solids (%)</th>
<th>Yield Stress (Pa) After plunging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corner 1</td>
<td>2.5</td>
<td>36.48</td>
<td>2694 2681 2674</td>
</tr>
<tr>
<td>Corner 2</td>
<td>3</td>
<td>38.23</td>
<td>2744 2738 2739</td>
</tr>
<tr>
<td>Center</td>
<td>5</td>
<td>40.53</td>
<td>2834 2834 2837</td>
</tr>
<tr>
<td>Corner 3</td>
<td>4</td>
<td>39.57</td>
<td>2795 2788 2784</td>
</tr>
<tr>
<td>Corner 4</td>
<td>4.5</td>
<td>40.14</td>
<td>2829 2829 2825</td>
</tr>
</tbody>
</table>
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Chemical Treatment of Dredged Solids

by Dewey W. Hunter
Section 6.8

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- **Presentation Title:** Specification and Testing of Geotextile Tubes

- **Author:** George R. Koerner, Ph.D., PE & CQA

- **Affiliation and Contact Information:**
 Geosynthetic Institute (GSI)
 475 Kedron Ave. Folsom PA 19033, USA
 (610) 522-8440 or gkoerner@dca.net
 www.geosynthetic-institute.org

Jointly Sponsored by:
- Mississippi State University Civil and Environmental Engineering Department
- Mississippi State University Office of Research
- US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Presentation Outline

- Background
- Manufacturing
- Specification
- Discussion Items

Liquid Limit
GS and soft soils

Walls, slopes and embankments

Polymeric Materials

- polymer = poly (“many”) & mero (“parts”)
- characterized by high molecular weight, $M_w = 10,000$ to $100,000$
- there are thousands of polymers
- Geotextiles use only a few
Common Geotextile Polymers

Polyethylene terephthalate (PET)

Polypropylene (PP)

Geotextile Manufacturing

- Polymers: PP, PET or PE
- Yarns: Monofilament, Multi or Slit Film, Woven or Nonwoven
- Fabrics
PP and PET Manufacturing

Polypropylene (PP) and Polyester (PET)

<table>
<thead>
<tr>
<th>Type</th>
<th>Resin %</th>
<th>Plasticizer</th>
<th>Fillers</th>
<th>C.B.</th>
<th>Additives*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP</td>
<td>95-98</td>
<td>0</td>
<td>0</td>
<td>2-3</td>
<td>1-2</td>
</tr>
<tr>
<td>PET</td>
<td>97-98</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1-2</td>
</tr>
</tbody>
</table>

*Additives are various antioxidants
Carbon Black and Additives

Concentrate Let-Down
PET Durability requirements

- Minimum $M_w = 25,000$
- Max CEG = 30
MFI

Extruder
Extruding Yarns

Types of Polymeric Fibers or Yarns Used in the Construction of Different Types of Geotextiles

- Monofilament yarn
- Multifilament yarn
- Staple fibers
- Staple yarn
- Silt-film monofilament yarn
- Silt-film fibrillated yarn
Manufacturing Wovens Geotextile

Shuttle containing pin of weft thread
Reeds move up and down shading the warp threads to make a tunnel for the shuttle
Warp threads
Reed
Woven cloth
Loom
Shuttle path
Weft thread
Woven cloth wound onto beam
Anchor Tubes on Both Sides of Main Tube
Geotextile Tube Specification

- Need existed for generic MQC specifications
- GSI assembled three main manufacturers at the time (1997)
- Several meetings of ad-hoc committee
- GRI-GT10, Application specific specification for “Coastal and Riverine structures.”
- Original approved by GSI membership on September 27, 1999
- Specification addresses
 - Properties
 - Test Methods
 - Units
 - Limiting test values
 - Frequencies

Main Tube Circumference

- Factory manufactured in six circumferences, maximum size is 5.7 m (19 ft.)
- Typical lengths include but are not limited to, 2.3; 4.6; 6.8; 9.1; 14 and 18 m (7.5; 15; 22.5; 30; 45 and 60 ft.)
Anchor Tube Circumference

- 0.9 or 1.8 m (3 or 6 ft.) circumference
- connected to main tube by a fabric scour apron
- some designs call for two anchors

Wide Width and Seam Properties

<table>
<thead>
<tr>
<th>(a) Main Tube Properties</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
<td>ASTM</td>
<td>Aggressive</td>
<td>Typical</td>
</tr>
<tr>
<td>strength</td>
<td>D4595</td>
<td>175 × 175 kN/m</td>
<td>70 × 95 kN/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(1000 × 1000 lb/in.)</td>
<td>(400 × 550 lb/in.)</td>
</tr>
<tr>
<td>elongation</td>
<td>D4595</td>
<td>15 × 15%</td>
<td>20 × 20%</td>
</tr>
<tr>
<td>seam</td>
<td>D4884</td>
<td>105 kN/m</td>
<td>60 kN/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(600 lb/in.)</td>
<td>(350 lb/in.)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(b) Anchor Tube Properties</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Property</td>
<td>ASTM</td>
<td>Aggressive</td>
<td>Typical</td>
</tr>
<tr>
<td>strength</td>
<td>D4595</td>
<td>70 × 95 kN/m</td>
<td>70 × 95 kN/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(400 × 550 lb/in.)</td>
<td>(400 × 550 lb/in.)</td>
</tr>
<tr>
<td>elongation</td>
<td>D4595</td>
<td>20 × 20%</td>
<td>20 × 20%</td>
</tr>
<tr>
<td>seam</td>
<td>D4884</td>
<td>60 kN/m</td>
<td>35 kN/m</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(350 lb/in.)</td>
<td>(200 lb/in.)</td>
</tr>
</tbody>
</table>
Tensile Strength ASTM D4595

Demgen grips Non-contact extensometer
Commentary on WWT:

- Important property which is hotly contested
- Grips can not initiate failure and break must occur within the gage length
- 2, 5, 10% Modulus often used for design
- 1.25% preload of expected breaking force is allowed in method
- Good specimen preparation is critical
Types of Geotextile Seams

Sew
Thermal bond
Glue

Use thread of contrasting color to geotextile for CQA continuity check

Sewn Seam Test ASTM D4884
Trapezoidal Tear Strength

- **Follows ASTM D4533**

<table>
<thead>
<tr>
<th>location</th>
<th>aggressive</th>
<th>typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>main tube</td>
<td>2.7×2.7 kN $(600 \times 600$ lb)</td>
<td>0.8×1.2 kN $(180 \times 270$ lb)</td>
</tr>
<tr>
<td>anchor tube</td>
<td>0.8×1.2 kN $(180 \times 270$ lb)</td>
<td>0.8×1.2 kN $(180 \times 270$ lb)</td>
</tr>
</tbody>
</table>

- **Frequency is every 7500 m² (10,000 yd²)**
Trap Tear ASTM D4533

Puncture Strength

- follows ASTM D4833
- it's called "pin" puncture
- uses a 8.0 mm (5/16 in.) probe

<table>
<thead>
<tr>
<th>location</th>
<th>aggressive</th>
<th>typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>main tube</td>
<td>1.8 kN (400 lb)</td>
<td>1.2 kN (260 lb)</td>
</tr>
<tr>
<td>anchor tube</td>
<td>1.2 kN (260 lb)</td>
<td>0.7 kN (160 lb)</td>
</tr>
</tbody>
</table>

- frequency is every 10,000 yd² (7500 m²)
Puncture ASTM D4833

Apparent Opening Size

- its dry bead sieving, per ASTM D4751
- AOS is often called EOS
- it’s a maximum value, i.e., “max. ave.”
- either 0.95 in mm, or equivalent U. S. sieve size

<table>
<thead>
<tr>
<th>location</th>
<th>aggressive</th>
<th>typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>main tube</td>
<td>0.425 mm (No. 40)</td>
<td>0.425 mm (No. 40)</td>
</tr>
<tr>
<td>anchor tube</td>
<td>0.425 mm (No. 40)</td>
<td>0.60 mm (No. 30)</td>
</tr>
</tbody>
</table>

- frequency is every 40,000 m² (50,000 yd²)
Apparent Opening Size ASTM D4751

Water Flow Rate

- uses ASTM D4491
- measures flow rate/unit area

<table>
<thead>
<tr>
<th>location</th>
<th>aggressive</th>
<th>typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>main tube</td>
<td>240 l/min-m² (6.0 gal/min-ft²)</td>
<td>240 l/min-m² (6.0 gal/min-ft²)</td>
</tr>
<tr>
<td>anchor tube</td>
<td>240 l/min-m² (6.0 gal/min-ft²)</td>
<td>240 l/min-m² (6.0 gal/min-ft²)</td>
</tr>
</tbody>
</table>

- frequency is every 40,000 m² (50,000 yd²)
Permittivity ASTM D4991
 Ultraviolet Resistance

- follows ASTM D4355
- it’s the Xenon Arc device
- measures strength retained after 150 hrs. exposure
- must be $\geq 65\%$ of original
- frequency is every year

 Typical Xenon Arc Weatherometer

Interior Chamber of Xenon Arc Weatherometer
The Basic Tables follow

Main and Anchor Tubes – Aggressive
Main and Anchor Tubes – Typical

Note: The most recent version of this specification (text and tables) is available on the GSI Web Site

www.geosynthetic-institute.org

Table 1(a): Class 1 Tubes - Aggressive Conditions
(all are minimum average values unless noted otherwise)

<table>
<thead>
<tr>
<th>Property</th>
<th>Text English Units</th>
<th>ASTM</th>
<th>Metric Units</th>
<th>Frequency</th>
<th>ASTM</th>
<th>Metric Units</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tube Circumference</td>
<td>Measured 7.5/15/22.5/50/45/100 ft.</td>
<td>n/a</td>
<td>2.3/4.6/6.9/14/18 m</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fill Port Diameter</td>
<td>12 or 18 in.</td>
<td></td>
<td>30 or 45 cm</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide Width Tensile Strength</td>
<td>1000 x 1000 lb/in.</td>
<td></td>
<td>175 x 175 kN/m</td>
<td>7500 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide Width Elongation (max.)</td>
<td>13 x 13%</td>
<td></td>
<td>15 x 15%</td>
<td>7500 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Tear Strength</td>
<td>600 lb</td>
<td></td>
<td>2.7 x 2.7 K</td>
<td>7500 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforation Strength</td>
<td>600 lb/in.</td>
<td></td>
<td>1.8 Kg</td>
<td>7500 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seam Strength (factory)</td>
<td>600 lb/in.</td>
<td></td>
<td>1.05 m²</td>
<td>40,000 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaps in Opening Size (AOS)</td>
<td>6 gpm/ft</td>
<td></td>
<td>240 l/min/m²</td>
<td>40,000 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance</td>
<td>65%</td>
<td></td>
<td>65%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1(b): Class 1 Scour Aprons - Aggressive Conditions
(all are minimum average values unless noted otherwise)

<table>
<thead>
<tr>
<th>Property</th>
<th>Text English Units</th>
<th>ASTM</th>
<th>Metric Units</th>
<th>Frequency</th>
<th>ASTM</th>
<th>Metric Units</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchor Tube Circumference</td>
<td>Measured 3.6 ft.</td>
<td></td>
<td>0.9 x 1.8 m</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide Width Tensile Strength</td>
<td>400 x 550 lb/in.</td>
<td></td>
<td>7500 m²</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wide Width Elongation (max.)</td>
<td>25 x 20%</td>
<td></td>
<td>7500 m²</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tensile Tear Strength</td>
<td>180 x 270 lb</td>
<td></td>
<td>7500 m²</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforation Strength</td>
<td>350 lb/in.</td>
<td></td>
<td>40,000 m²</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seam Strength (factory)</td>
<td>350 lb/in.</td>
<td></td>
<td>40,000 m²</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydraulic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gaps in Opening Size (AOS)</td>
<td>6 gpm/ft</td>
<td></td>
<td>240 l/min/m²</td>
<td>40,000 m²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Endurance</td>
<td>65%</td>
<td></td>
<td>65%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Regarding MARV

- minimum average roll value
- accommodates variation in GT properties
- statistically it’s the “μ-2σ” value
- Shown in following slides
Field Sampling to Obtain Average Roll Value

Take Specimens from above Sample and Test as Required

<table>
<thead>
<tr>
<th>Test Number</th>
<th>Roll Number 1</th>
<th>Roll Number 2</th>
<th>Roll Number 3</th>
<th>Roll Number 4</th>
<th>Roll Number 5</th>
<th>Roll Number 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>643N</td>
<td>627N</td>
<td>627N</td>
<td>637N</td>
<td>642N</td>
<td>652N</td>
</tr>
<tr>
<td>2</td>
<td>643N</td>
<td>615N</td>
<td>643</td>
<td>646</td>
<td>641</td>
<td>624</td>
</tr>
<tr>
<td>3</td>
<td>652</td>
<td>621</td>
<td>628</td>
<td>658</td>
<td>639</td>
<td>631</td>
</tr>
<tr>
<td>4</td>
<td>629</td>
<td>616</td>
<td>662</td>
<td>641</td>
<td>657</td>
<td>620</td>
</tr>
<tr>
<td>5</td>
<td>632</td>
<td>619</td>
<td>646</td>
<td>635</td>
<td>642</td>
<td>618</td>
</tr>
<tr>
<td>6</td>
<td>641</td>
<td>621</td>
<td>633</td>
<td>642</td>
<td>651</td>
<td>633</td>
</tr>
<tr>
<td>7</td>
<td>662</td>
<td>622</td>
<td>619</td>
<td>658</td>
<td>641</td>
<td>641</td>
</tr>
<tr>
<td>8</td>
<td>635</td>
<td>628</td>
<td>636</td>
<td>662</td>
<td>645</td>
<td>625</td>
</tr>
<tr>
<td>Average</td>
<td>640</td>
<td>621</td>
<td>648</td>
<td>646</td>
<td>629</td>
<td></td>
</tr>
</tbody>
</table>

Thus, MARV = 621 N
Workshop Discussion Items (WDI)

- Purposely Omitted Tests
 - Mass per unit area (weight)
 - Thickness
- Performance testing: HBT per GRI-GT14, FFF per GRI-GT8 and PF per GRI-GT15 tests
- Endurance testing of coatings
- Connections and repair testing
- Installation Storage and Handling per GRI-GT11
- Geotextile tubes manufactured on circular loom
- Accreditation

Silty Harbor Sediments
Low Permeability Filter Cake is Troublesome

Commentary on HBT:

- AOS and permittivity are poor predictors of behavior for these GT as tubes
- This pertains to both water flow rate and passing soil/sediment gradation
- Fine sediment/sludges are the most challenging w/r to filtration design
- HBT is reasonable from a qualitative “go/no go” perspective; with or without coagulant
- Need to standardize pass fail criteria
- This is a CQA rather than a MQC test
Other Performance Tests
Coatings: GT is susceptible to UV and Temperature degradation

GAI-LAP Accreditation

- Lab needs to be accredited
- Model program after ISO 17025
- On-site audits
- Annual proficiency tests
- Pass/Fail based on proper equipment, documentation & good test results

GRI-GT11 Installation, Handling and Storage

- GT is susceptible to installation damage
- Rolls are heavy and require special construction equipment to lift and fill
- Do NOT push, slide or drag Geotextile tubes
- Storage for longer than 6 months requires special precautions
- Geotextiles cannot be trafficked
Concluding Comments

- MQC specification for GT tube was presented
- focuses on geotubes for coastal and river structures; however, sludge dewatering is a large application area for geotextile tubes
- main tubes can be enormous
- hydraulic filled with sand to prevent erosion however, many other infills possible
- aggressive vs. typical conditions are listed, but subjective
- Hopefully WDI were provocative
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Specification and Testing of Geotextile Tubes by George R. Koerner, Ph.D., PE &CQA.
Section 6.9

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- **Presentation Title:** Analysis and Design of Geotextile Tubes
- **Author:** Dov Leshchinsky, PhD
- **Affiliation and Contact Information:**
 University of Delaware
 Ph: (302) 831-2446
 Fax: (302) 831-3640
 Email:dov@ce.udel.edu

Jointly Sponsored by:
- Mississippi State University Civil and Environmental Engineering Department
- Mississippi State University Office of Research
- US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
References

Structure of Tubes

Tubes are made of geotextile sheets sewn together to form a shell capable of confining pressurized slurry

- Critical: construction stage/seam strength
Objectives: Find sectional geometry and geotextile stresses

Idealization for simple analysis:

- Problem is 2-D
- Geotextile shell is flexible, thin and weightless
- Elongation of geotextile is negligible
- Slurry in tube produces hydrostatic stresses
- Shear between geotextile and slurry is negligible
- Foundation is leveled and relatively stiff
Formulation: Notation

- Equilibrium in direction of \(r \) along \(dS \):
- \(r(x) = T / p(x) \)

Formulation

- Radius of curvature = Differential equation:
 \[r(x) = \frac{1+(y')^2}3 / y'' \]
- Combine equations of \(r(x) \):
 \[Ty'' - (p0 + \gamma x) [1+(y')2]3/2 = 0 \]
- Nature of numerical solution:
 \(y = f(x|T, p0, h, \gamma) \)
Impose Physical Constraints

- \(y = f(x|T, p_0, h, \gamma) \Rightarrow \gamma \) is known

 Unknowns: function \(y(x) \) and design parameters \(T, p_0, h \)

 Specify one parameter \(\Rightarrow \) Impose two physical constraints to solve:

 - \(p \cdot b = W \Rightarrow b = W / (p_0 + \gamma h) \)
 - Replace \(b \) with \(L \) (\(L \) is meaningful physical constraint)
 - Because of symmetry, tangent at \((0,0)\) must be horizontal

Solve:

\[y = f(x|T, p_0, h, \gamma) \]

For given

- \((L, \gamma)\) and \(p_0 \)
- \((L, \gamma)\) and \(T \)
- \((L, \gamma)\) and \(h \)
Axial Load

- 2-D section yields resultant force in the longitudinal direction. Reaction force is evenly distributed along the geotextile circumference.

Experimental Verification

- Liu (1981) used mortar-filled 2.5 m long tubes (Polyvinyl Chloride Tubes)

p at bottom: 1.73 kPa
Experimental Verification

- p at bottom: 3.86 kPa

- Slurry is twice as heavy as water
Sensitivity to Pumping Pressure

Geotextile Strength

\[T_{ult} = T_{work} \left(F_{id} \cdot F_{cr} \cdot F_{bd} \cdot F_{cd} \cdot F_{ss} \right) \]

- \(T_{ult} \) = short-term strength of geotextile
- \(T_{work} \) = calculated tensile force during pumping in circumferential or axial direction
- \(F_{id} \) = reduction for installation damage
- \(F_{cr} \) = reduction for creep
- \(F_{bd} \) = reduction for biological degradation
- \(F_{cd} \) = reduction for chemical degradation
- \(F_{ss} \) = reduction for seam strength
Geotextile AOS: AASHTO, TF 25 (just an example as it is outdated; use relevant ASTM test procedure)

- For soil with 50%>+#200, use AOS>#30 ($D_{95}<0.59$ mm)
- For soil with 50%>+#200, use AOS>#30 ($D_{95}<0.59$ mm)
- Is this filtration criterion universally valid? Will it guarantee that the geotextile will not clog? Will it guarantee acceptable retention of particles? When in question, use real fill material for evaluation.

Selecting AOS with hydrodynamics can be challenging

Case History

Gaillard Island Experiment

- Pumping through 20 cm branch pipe
- Tubes attained asymmetrical elliptical shape, about 1.5 m high and 3.5 m wide
- Pumping pressure never exceeded 30 kPa
Gaillard Island Experiment

- Four tubes, each 150 m long
- Tubes fabricated from two 4.2 m wide sewn woven sheets
- Strength: 70 kN/m in warp and 45 kN/m in fill direction
- EOS for two was #70 and for the other two #100
- Clay fill: LL=120, PL=32, PL=88
- Two tubes lined with inner nonwoven geotextile
Connecting Pipe to Inlet

Pipe Connected to Inlet

Start of Pumping

One Hour Later…
Even the Birds Were Amazed…

Consistency of Pumped Material

Small Amount of Fines Washing Out Immediately After Pumping

Small Amount of Fines Washing Out Immediately After Pumping
Small Amount of Fines Washing Out Immediately After Pumping

Blocked Inlet Immediately After Pumping

Crest is Graded to Receive 3rd Tube

Pumping into Tube on Crest
Twisting and Sliding of Tube

Sample for Water Content Shortly After Pumping

Clean Water Seeping Due to Filtration (1 Hour After Pumping)

Water Content Along Tube

<table>
<thead>
<tr>
<th>Time [days]</th>
<th>Location [m]</th>
<th>Unit Weight [kN/m³]</th>
<th>Water Content [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>12.3</td>
<td>214</td>
</tr>
<tr>
<td>0</td>
<td>70</td>
<td>11.7</td>
<td>284</td>
</tr>
<tr>
<td>0</td>
<td>140</td>
<td>11.5</td>
<td>308</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
<td>13.2</td>
<td>127</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>12.7</td>
<td>153</td>
</tr>
<tr>
<td>30</td>
<td>140</td>
<td>11.7</td>
<td>286</td>
</tr>
</tbody>
</table>
About One Month After Pumping

About One Month After Pumping

About 6 Months After Pumping

Local Rupture of Seam…
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Analysis and Design of Geotextile Tubes presentation by Dov Leshchinsky, PhD
Section 6.10

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- **Presentation Title:**

 Installation and Performance of Geotextile Tubes

- **Author:**

 Nate Lovelace (Presenter) and Ed Herman

- **Affiliation and Contact Information:**

 Corps of Engineers, Mobile District

Jointly Sponsored by:

- Mississippi State University Civil and Environmental Engineering Department
- Mississippi State University Office of Research
- US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Covering Your Bases

- PERMITS
- BORROW SOURCE
- FOUNDATION
- ALIGNMENT
- TOLERANCES
- EQUIPMENT
- SCHEDULE

Getting Started

- Practice Tube (if possible)
- First Tube is the WORST
- Trench or cradle
- Plenty of Straps
- Plan for run-off
- Always order extra bags
Problems

- Fill Port Patches
- High Wind
- Constant Elevation
- Joints
- Terminating the Ends
- Curious People
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Installation and Performance of Geotextile Tubes by Nate Lovelace and Ed Herman.
Section 6.11

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- **Presentation Title:**
 HSARPA - SERRI Water-Filled Technologies for Rapid Repair of Levee Breaches

- **Author:** Don Resio, PhD

- **Affiliation and Contact Information:**
 Senior Research Scientist
 US Army Corps of Engineers Engineer Research and Development Center (ERDC)
 Ph: (601) 642-2018
 Fax: (601) 634-2055
 Email: Donald.T.Resio@usace.army.mil

Jointly Sponsored by:
- Mississippi State University Civil and Environmental Engineering Department
- Mississippi State University Office of Research
- US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Potential Levee and Dam Breaches Represent a Major Problem in Many Areas of the US

- New Orleans area
- Sacramento area
- Lake Okeechobee
- Rivers in Midwest
- Etc.

Breaching of large earthen levees typically develops quickly. Effective levee repair must be emplaced within a few hours of the initial breach.
Logistics Limitations:

Little or no access by land or water

Staging areas are almost nonexistent

Often only helicopter airdrops are possible
Bottom Line Time is Money!
At least 1.5 feet of the flood level in Metro New Orleans was due to water entering the city after 1300 CDT on the 29th.

The increased cost due to this 1.5 feet of water was $1.5 BILLION.

Figure 5. ADCIRC stage-hydrograph for 17th Street Canal at Lake Pontchartrain.

Figure 6. Relationship of stage and flood damage with uncertainty for Orleans Metro 5 (CM5) drainage subbasin—pre-Katrina conditions.
FY 07 start for a new DHS innovation project:

Rapid Repair of Levee Breach

Just because a problem is important does not mean that it can be solved. This problem has been around for a long time and has been viewed by many as intractable.

Major Complications Include:
1. Time for effective solution can be very short;
2. Little or no site access and logistics support;
3. Forces required to stop flow are huge;
4. Breach shape can be very irregular;
5. Anchoring forces can be extremely large; and
6. Stability of adjacent levees can be suspect.

Many innovative ideas were investigated
- rapid construction methods
- large gated structures
- special high-tech materials (unobtainium?)

However, given the time/logistics constraints on this project we began to recognize that most of these could not presently meet our needs. And we began to focus on an area that we have been a leader in for many years – marine construction with fabrics.
The world’s largest marine fabric structure

Figure X. RIB System used during ATD in Dec 2002.

Figure X. RIB used in FY 96 field study.

Figure X. Final design drawing for ATD RIB.
Fabrics have been used in structures since the late 19th century – primarily in a simple “tension” mode.

Vladimir Shukhov’s Oval Pavilion 1896
Typical fabric use in construction:

- In tension (e.g. roofs, bridges, etc.)
- Under pressure (e.g. tires, domes, etc.)
- To create beams that can carry moments.

Each of these modes of application had shortcomings for RRLB

Air-beam structure at US Army Natick Lab in Natick, Massachusetts

In addition to the 3 modes of application already mentioned, water is frequently used today to create “ballast” inside of fabric tubes.

In this case, the tubes contain internal baffles to prevent them from rolling, since they are typically deployed over relatively flat terrain.

- This is effective on flat surfaces but not in levee-breach situations.
- Ballast comes only from the portion of contained water above the adjacent water surface and would be very difficult to deploy while overtopping is occurring.
Over a 13 month interval:

• Assembled an expert team of innovative engineers and scientists from within our laboratory and the private sector (Oceaneering & Kepner Plastics).
• Developed fundamentals for understanding the problem - hydrodynamics, geomorphology, geotechnical properties, structural requirements, etc.
• Examined a wide range of solution concepts
• Down-selected the best concepts
• Tested through a cycle of smaller scales (1:50 & 1:16)
• Designed large-scale (1:4) tests
• Constructed and demonstrated at ARS, Stillwater

Why Stillwater and why 1:4 scale?
ARS-HERU is one of the largest facilities in US.
Flow rates of 100 to 125 cfs sustainable.
Still a very difficult problem.
Solutions should be scalable to full scale.
Three different types of water-filled fabric concepts were tested:

Rapid Spillway/Earthen Dam Protection:
Protect earthen section from breaching
during high flow, while allowing overtopping
(uses a simple lightweight ballasting concept)

Long Shallow Breach:
Seal a very long breach either before or
during interval of water flow through it
(does not depend on breach side support)

Deep/Steep Breaches (two times):
Seal a significant breach while water
is moving through it at high velocity
(uses sections near breach for support)

Even in a 1:4 scale test forces can be very large –

• Only about 5200 pounds of water is held back;
 but shutting down the flow in 1 second
 results in a force that is 100 times greater!!
• Even this test would require a 32-inch to 40-inch
 “I-beam” with a steel plate to block the
 flow. This would weigh about 5000 pounds
• And for conventional moment-bearing materials
 it gets much worse at full scale (approximately
 a factor of 256 times heavier) for a breach that
 is 4 times larger than the test breach today.
• And you would still have to figure out how to
 seal the edges
Once, we began to examine what was gained by having a levee or portion of a levee in place, we recognized we could utilize the levee or remnant levee as part of the solution.

In this case, we discovered that a fundamental property of water – its incompressibility – could be used to make a fabric system that resisted deformation past some threshold.

- Constrained horizontal deformation
- Constrained vertical deformation

Demonstration - Stillwater, OK
28 Sep 2008
No “scale effects” are apparent in testing to date - which suggests this new approach should work well at full scale.

Requirements for fabrics scale with the depth of the breach and the tube diameter.
Path Ahead

- Plan a demonstration of a PLUG capable of stopping a rupture the size seen in Hurricane Katrina
 - Locate suitable location
 - Conduct demonstration
- Investigate Fabric improvements
 - Durability
 - Reparability
 - Scalability
- CONOPs development
 - Deployment requirements
 - Storage requirements

Questions?
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of HSARPA - SERRI Water-Filled Technologies for Rapid Repair of Levee Breaches by Dr. Don Resio
Section 6.12

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- **Presentation Title:**
 Geotubes for Structural Applications

- **Author:**
 Ed Trainer

- **Affiliation and Contact Information:**
 TenCate Geotube
 3680 Mount Olive Road
 Commerce, GA 30529
 (ph) 706-693-1852
 (email) e.trainer@tencate.com

Jointly Sponsored by:
• Mississippi State University Civil and Environmental Engineering Department
• Mississippi State University Office of Research
• US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Marine Structural Applications
Geotube® Marine Applications

SAND DUNE CORE

Projects:
- Atlantic City, New Jersey
- Sea Isle City, New Jersey
- NASA Wallops Isl., VA
- Bolivar Peninsula, Texas
- UnoCal, California

Typical Sand Dune Reinforcement Design
Atlantic City, NJ

5,000 lin. feet of Geotube® containers installed to protect the Boardwalk and billions of dollars in real estate.

Installed 1994

Atlantic City, NJ

Geotube® unit filled to a height of 6 feet with beach sand.
Atlantic City, NJ

Geotube® unit covered with sand and vegetated with dune grass to give the appearance of a natural dune.

Atlantic City, NJ

Following heavy storm activity in 1995, sand was washed from the ocean side of the Geotube® unit with no damage to the Boardwalk or adjacent property.
After the storm, the sand over the Geotube® units was replaced. The units continue to protect the shoreline today.

“Countless dollars in reconstruction were saved by the timely installation of Geotube® [units],” The Press of Atlantic City, Aug. 11, 1995.
Sea Isle City, NJ

4,000 lin. feet of Geotube® containers protect the shoreline and the highway behind it.

Installed 1997

Sea Isle City, NJ

Geotube® container being filled by hopper method with imported sand.
Sand being placed in hopper with backhoe. Note that hopper discharges directly into the tube.

Sea Isle City, NJ

Geotube® unit filled to a height of 6 feet.

Sea Isle City, NJ
Sea Isle City, NJ

Offshore storm generating heavy wave activity as the tide rolls in.

Sea Isle City, NJ

Geotube® unit withstands heavy wave impact at high tide.
Sea Isle City, NJ

Geotube® unit and scour apron intact after extreme high tide and heavy wave attack.

NASA Wallace Flight Center, Wallops Isl., VA

Hurricane Ernesto and tropical storms badly eroded the beach and adjacent launch pad at NASA Wallace Flight Center in the Fall of 2006.
Beach was graded, a scour apron was placed, and anchor tubes filled with sand. 34°C x 200’L tubes were rolled out and pumped with sand slurry.

Imported sand and water from the surf were mixed together in a slurry pit and pumped to the Geotube® units.
A header system with multiple flexible lines fed the sand slurry into the geoports.

ISLAND CREATION
Projects:
- Amwaj Islands, Bahrain
- Buena Ventura, Colombia
- Naviduct, The Netherlands
Located in the Arabian Gulf off the coast of Bahrain, the project will use more than 30 kilometers of 13m circumference Geotube® containers to create the perimeter for the 2.79 million meter square island.

The perimeter was created by filling two layers of Geotube® containers to a total height of 4.6 meters.
The Geotube® containers are typically covered in sand, but in some areas, rip rap was used.

The first Geotube® container layer is installed to a height of 2.6 meters using a .4 meter diameter cutter head dredge.
Amwaj Islands

The second layer of Geotube® containers is filled by the hopper method, or with a sand induction pump to a height of 2.0 meters.

When the islands are completed, most of the tubes will be covered with sand and a beach will be created in front for the private residences.

The combined height is 4.6 meters.
Amwaj Islands

The island is being created by filling inside the Geotube® container perimeter with sand that is being dredged from the surrounding area.

Amwaj Islands

The $1.5 billion development includes 2 marinas, 3 five-star hotels, 30 commercial office buildings, and more than 1,350 private residences with beach front locations.
City required a dredge spoil disposal site within San Antonio Bay to contain 600,000 m³ dredged from navigation channel.

Buena Ventura, Colombia

1,100 lin. meters of 20 meter circumference by 3 meter high Geotube® containers were installed to create the perimeter containment for the dredge disposal island.

Buena Ventura, Colombia
Buena Ventura, Colombia

The Geotube® containment project as it nears completion.

Naviduct Geotube® Project, The Netherlands

Geotube® units formed the perimeter for dredge spoil area during lock construction.

Installed 1999-2000
Dredging of 900,000 m³ of peat and sand for the lock
7,500 linear meters of tubes with a diameter of 3.92 meters.

60,250 m² of woven PP fabric 80 kN/m for the protection of the Geotube® units (against damage caused by dumping rock on top of them).
Naviduct Geotube® Project

Geotube® units installed before rip rap placement.
Naviduct Geotube® Project

Rip rap over Geotube® unit as final erosion protection.
(note geotextile protection layer)

Edwin Zengerink
Date: 29 May 2006

Temporary dam in Morocco near Rabat
Temporary Dam in Morocco

- Final Dam height 6 meter
- 2 – 1 Geotube® Pyramid Structure
- Geotube® units, 15.7m circumference, fill height 3 m.
- Geotube length approximately 70 meter.
- Material used Geolon® PP 200 S, seam strength 160 kN/m.
- Finally covered with Nicoflex, impermeable liner.

Geotube®

Geotube Dam Cross Section
Building a temporary dam in Morocco

Geotube®

Building a temporary dam in Morocco

Geotube®
Geotube®

Building a temporary dam in Morocco

Image 1: Construction site with Geotube® material being used to build a temporary dam in Morocco.

Image 2: View of the completed Geotube® temporary dam in Morocco.
Geotube®
Building a temporary dam in Morocco

Incheon Grand Bridge
Geotube® brief

- Geotube® solution – as dykes for reclamation of temporary island for construction of bridge
- More than 14km of tubes
- 3m, 4m & 5m diameter
- Mostly 50m & 60m long but some down to 15m to match profiling

Equipment

- Sand supply barge – 1,800 m³
- Work barge
 - Crane
 - Mixing tank
 - Water pumps
 - Excavators
Equipment

- Booster pump at 450HP
- Pumps 150 to 180 m³/hr

Mixing tank Pumps Filling hose

Sand

- Key qualities: flowability, settling time, permeability
- Coarse sand, low fines, maximum gravel size
- Settling time of silica particles:
 - Gravel (10mm) – 1 sec
 - Coarse sand (1mm) – 10 sec
 - Fine sand (0.1mm) – 125 sec
 - Silt (0.01mm) – 108 min
- Quality of sand for fill at site very good
Filling
- Hydro-shaping: only water is pumped
- This will ensure good top level finish and even cross-section profile
- Quality achievable at sitegood

2nd layer
- Sand mattress placed over 2 bottom tubes
2nd layer

- 2nd layer tube placed above sand mattress

2nd layer

- Filled 2nd layer geotube
2nd layer

- Completed 2nd layer on nearside of island

Geotube®
Proton of the Project completed
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Geotubes for Structural Applications by Ed Trainer.
Section 6.13

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- Presentation Title:
 Geotubes for Dewatering Applications

- Author:
 Ed Trainer

- Affiliation and Contact Information:
 TenCate Geotube
 3680 Mount Olive Road
 Commerce, GA 30529
 (ph) 706-693-1852
 (email) e.trainer@tencate.com

Jointly Sponsored by:
- Mississippi State University Civil and Environmental Engineering Department
- Mississippi State University Office of Research
- US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Dewatering Applications

Geotube® Marine Dewatering Applications

Advantages:
- Low cost
- High volume
- Custom sizing
- Flexibility.
Geotube® Marine Dewatering Applications

MARINE DEWATERING Projects:
Fox River
Badger Ammunition
Conner Creek
ConEdison

Fox River Cleanup

Wisconsin
Challenge: Removal of 750,000-1 million yd³ of PCB contaminated river and lake sediments that were generated from a concentration of paper mills along the entire length of the lower Fox River.

Installed 2004-2006
Fox River Cleanup

Solution: In the initial trial, 60' circumference GT500 Geotube® Dewatering Containers were used to contain, dewater and remove the first 20,000 yd³ of contaminated sediments from Little Lake Butte des Morts.

Fox River Cleanup

Solution: The Geotube® dewatering process was so effective in PCB removal and dewatering (achieving >50% solids) that it was selected for the full-scale project.
A special 8” swinging ladder cutter head dredge without cables was used to dredge sediments to allow for pleasure boat traffic during operations.

A HDPE lined dewatering cell with an 18” aggregate drainage layer was installed to collect all of the effluent water from the Geotube® containers.
Lay down area during installation.

Geotube® containers were stacked three and four layers high within the dewatering cell.
To date, successfully dewatered and treated 250,000 yards3 of PCB contaminated material for removal.

- Geotube® units kept pace with the dredge pumping >2,000 gpm.

Dewatered sediments averaged 50% total solids.

Considerable savings over traditional methods of dewatering (ex. $100 less per cubic yard during pilot phase).
Challenge: Clean up contaminated sediments from harbor caused by run-off from munitions production.

Solution: 28,200 linear feet of 45’ circumference (2001) and 10,650 linear feet of 60’ circumference (2006) GT 500 Geotube® containers were installed to dewater over 145,000 cubic yards of contaminated sediments.
Badger Army Ammunition Plant

U.S. Army Corps of Engineers specified Geotube® technology as the best practice for dewatering contaminated marine dredge materials.

Badger Army Ammunition Plant

The 25 acre harbor was dredged to remove contaminated sediment. Containments included mercury, lead and copper.
A manifold method of filling the containers was designed for the project. Each branch could be individually adjusted to control sediment flow.

Each pipe that leads to a Geotube® bag was fitted with a pinch valve to control flow.
To aid in dewatering and consolidation, polymer was injected into the dredge spoil discharge line.

Geotube® units were installed side by side. Each was able to dewater an average of 750 cubic yards of contaminated sediments.
To maximize the allotted space for the dewatering project, three layers of Geotube® containers were added.

The effluent was collected in a temporary lagoon which will eventually become a wetlands area.
The clean lagoon water was used for irrigation.

The Geotube® containers remain in the dewatering basin and were covered with 3’ of soil in 2002.
In 2006, a new layer of Geotube® containers was installed over the top of the previous containers in the basin.

The second phase will dewater 50,000 cubic yards.
Conner Creek

Challenge: Removal of 75,000 cubic yards of biosolids, PCBs, heavy metals, and carbon fuel contaminated sediments from the combined storm sewer and sewage overflow canal.

Installed 2004

Solution: 14,000 lin. ft. of 60’ circumference GT500 Geotube® dewatering containers were used to contain, dewater and remove the contaminants from the dredged sediments.
Geotube® containers were placed in a dewatering cell alongside Conner Creek.

Clean effluent was returned to Conner Creek.
Dewatered sediments were removed with a hydraulic excavator and taken to a local landfill.
Solids exceeded 47%.

ConEdison

New York City

Challenge: Remove and dewater contaminated (PCB, hydrocarbons, etc.) sediments that collected in the cooling water intake tunnel for a power plant, while meeting strict EPA standards for effluent quality.

There was no available land for dewatering equipment of any type.

Installed 2006
ConEdison

Solution: Geotube® dewatering technology, adapted to be operated completely on barges in the East River, adjacent to the site.

ConEdison
Two 50' x 140' barges
ConEdison

Geotube® units were custom sized to fit the barges. Two layers of Geotube® units were stacked in each barge.

ConEdison

The Smartfeed™ patented mobile chemical feed system provided automated polymer mixing and injection for the project. Solids and flow were constantly changing, from 4% to 11% solids, and from 400 gpm to 1,500 gpm.

SmartFeed™ is a trademark of Mineral Processing Services, S. Portland, ME
ConEdison

The Smartfeed™ system tracked changes in solids and flow, adjusting polymer injection to optimum level every five seconds.

ConEdison

Effluent was clean enough for direct discharge without additional treatment.
In 45 days, 67% dry solids were achieved. Solids were removed from the barge and hauled to an EPA approved landfill in NJ.

Results: “Environmental concerns evaporated when it became clear the water retrieved from the silt and captured by the Geotube® containers was much cleaner than the natural water of the East River.”
ConEdison

Results: Silt volume was reduced from an estimated 52 barges (non-dewatered) to less than 1 barge of dewatered solids. The project was so successful that the same method was used for another facility upriver and approved for future applications.
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Geotubes for Dewatering Applications by Ed Trainer.
Section 6.14

2008 Geotextile Tubes Workshop

Nov 17-19 2008, Starkville MS

- **Presentation Title:**

 Disposal of Coal Mine Slurry Using Geosynthetic Containers at North River Mine in Berry, Alabama

- **Author:**

 Ed Trainer¹ (Presenter) and Mike Watts²

- **Affiliation and Contact Information:**

 1: TenCate Geotube
 3680 Mount Olive Road
 Commerce, GA 30529
 (ph) 706-693-1852
 (email) e.trainer@tencate.com

 2: Private Consultant

Jointly Sponsored by:

- Mississippi State University Civil and Environmental Engineering Department
- Mississippi State University Office of Research
- US Army Corps of Engineers Research and Development Center Coastal and Hydraulics Laboratory
Abstract:

• The processing of raw coal to a saleable, clean coal requires many mine operators to wash the run of mine product using a preparation plant. The fine rock particles leave the preparation plant suspended in water to form slurry. This waste slurry is normally disposed of via surface impoundments or injected into abandoned underground mine workings.

• When these primary methods of disposal are not available, the use of large geosynthetic containers for dewatering the slurry waste provides another means of waste processing. The use of geosynthetic containers for slurry dewatering is new to the industry and has successfully been implemented at Chevron Mining Inc. After testing was conducted and the necessary permits obtained, the North River Mine began using this unique and successful method to dispose of slurry.

• This presentation will explain the process and steps necessary for implementation.

Steps:

- Preliminary Testing
- Design and Permitting
- Bag Field Construction
- Filling the Bags
- Reclamation
Preliminary Testing

August 2007

Two - 100 foot Geotube® test bags were utilized
Polymer mixing tanks and injection pump setup

Test was performed by pumping slurry directly from Preparation Plant Thickener to the test bags

Solids at 25 – 35% Over 80% minus 400 mesh
“Making Sausages”
Results: Solids captured and water filtered
Design and Permitting

Bag Field Cut and Fill Design

2761.57 SQ. FT.

1658.53 SQ. FT.
Bag Field Plan View

Geotube Site #1 Tier 2
62 Bags 200' Long
Stacking Plan

Bag Field Construction
Crushed Rock was placed over the lay down areas to act as a drainage medium beneath the containers:
- 6” of crushed sandstone blend
- 3” crushed sandstone (# 57)
Final Grade to 1% slope draining to existing slurry pond

Filling the Bags
North River Mine
GeoTube Filling Project

Response Plan for Rupture or Leak of GeoTube Bag

Action Steps:
- Move all workmen to a position of safety
- Contain Material
- Determine extent of rupture or leak
- Continue to operate in unaffected area
- Mitigate problem by repair, removal, or replacement as needed.
- Investigate cause
- Clean up area if needed
- Report incident to Project Manager

Notes:
- Leaks rarely occur (maybe 1%). Care in handling bags is foremost.
- The safety factor of the bags at maximum pressure is over 4.0.
- All bag fields and work areas drain to the large pond effectively containing possible spills.

The Geotube® Containers used were 60 - 70 Feet in circumference and in various lengths
An 8-inch Cutterhead Dredge was used to pump the slurry from the surface impoundment to the Geotube® Containers.
A Manifold System was used to allow the filling of more than one tube at a time

Bags Dewatering
In order to utilize a smaller foot print for larger volumes of material, the Geotube® Containers were stacked four layers high in pyramid fashion.
The construction schedule of bag fields overlapped so that there was no lost time in moving from one area to the next.
Retired Bag Field II Tier II

Ready for reclamation

Covering Bags
Reclamation
Once retired the fields were immediately covered and reclaimed.

When the material inside the Geotube® Containers reach a moisture content of 35%, they could be covered and buried in place.
A layer of sand and a layer of rock was placed around the edges of the bag field for drainage.
Bags were then covered with material using low ground pressure equipment.
Reclaimed Bag Field III

Ready for seed and mulch
Project Statistics:

- January – August 2008
- 1750 cubic yards per day
- 240 Geotube® Containers
- 42,000 combined linear feet of bags
- 5 cubic yards of slurry per linear foot of bag
- Moisture 30 – 35% after dewatering
- Very stable

Results:

- Over 200,000 yards of slurry waste disposal
- No Safety Incidents
- No Environmental Incidents
Thank you to the following for their combined efforts to make this project a success:

Alabama Surface Mining Commission
J.F. Brennan Co., Inc.
Office of Surface Mining
PERC Engineering Co., Inc.
TenCate Geosynthetics
Whittemore Farms Excavation
2008 Geotextile Tubes Workshop was conducted as part of a research project funded by the US Department of Homeland Security (DHS) through UT Battelle at Oak Ridge National Laboratory under the Southeast Region Research Initiative (SERRI).

End of Disposal of Coal Mine Slurry Using Geosynthetic Containers at North River Mine in Berry, Alabama by Ed Trainer and Mike Watts.