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NOTICE

The contents of this report reflect the views of the author, who is responsible for the facts and
accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of
the Mississippi Department of Transportation or the Federal Highway Administration. This report
does not constitute a standard, specification, or regulation.

This document is disseminated under the sponsorship of the Department of Transportation in the
interest of information exchange. The United States Government and the State of Mississippi assume
no liability for its contents or use thereof.

The United States Government and the State of Mississippi do not endorse products or manufacturers.
Trade or manufacturer’s names appear herein solely because they are considered essential to the
object of this report.
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CHAPTER 1 - INTRODUCTION

1.1  Background

Soil-cement has been a popular chemical stabilization technique for roadways, airport
pavements, embankments, and foundations for decades. Soil-cement is defined by ACI
(2009) and PCA (2001) as “a mixture of soil and measured amounts of portland cement
(and/or other cementitious materials) and water, compacted to a high density to form a
hardened material with specific engineering properties.” Soil-cement technology has been
used since 1915, when a mixture of shells, sand, and portland cement was blended with a
plow and compacted (ACI 2009).

Soil-cement mixtures were first studied as an engineering material for roadway base
courses in the early 1930s by the South Carolina State Highway Department and the Portland
Cement Association (Scullion et al. 2005). Today, portland cement stabilization is one of the
most widely used and economical soil stabilization methods for highways (Griffin and Tingle
2009). This is particularly the case for regions containing natural soils and aggregates with
marginal engineering properties.

Soil-cement design has evolved over decades. In 1935, the Portland Cement
Association (PCA) started developing procedures to produce uniform and durable soil-
cement (Scullion et al. 2005). PCA ultimately developed ASTM D558, D559 and D560 to
determine optimum moisture content, maximum standard proctor dry density, and minimum
design cement content (Scullion et al. 2005). D559 and D560 utilize a method for
determining minimum cement content based on material durability. Testing involves 12
cycles of wetting and drying or freezing and thawing, along with a specified procedure of
specimen brushing to induce mass loss. The mass lost is compared to standards found from
PCA acceptance criteria, and the tests provide a minimum design cement content.

Over time, many agencies have adapted to using only compressive strength criterion
for soil-cement design. Correlations between durability and compressive strength were used
to move away from the wet-dry test and freeze-thaw test. Agencies preferred design based
on compressive strength rather than using D559 and D560. The reasons include the wet-dry
and freeze-thaw tests required a longer test time (one month compared to one week), more
lab equipment, and more technician involvement (Scullion et al. 2005). Also, the poor
repeatability of the wet-dry and freeze-thaw tests because of brushing inconsistencies
between laboratories has contributed to the reduced use of these tests in favor of design using
compressive strength (Samson 1986; Scullion et al. 2005).

Unlike the uniform criterion from PCA for the wet-dry and freeze-thaw tests,
agencies have adopted their own standards for design compressive strength. For example,
design of soil cement in Mississippi is governed by Mississippi Test Method 25 (MT-25).
The Mississippi Department of Transportation (MDOT) has set a minimum compressive
strength of 2070 kPa (300 psi) for design of pavement base layers. Specimens are made at
the estimated design cement index (C,) as well as plus one and minus one percent of
the estimated design cement index. One specimen is tested for compressive strength
per cement index per curing time (7 or 14 days). The design cement index is the least
amount of cement that produces a compressive strength of 2070 kPa or greater in 7 or
14 days.



ACI (2009) describes two general methods for mixing and constructing soil-cement
pavement layers. The first method is in-place mixing which utilizes a single-shaft mixer.
This method can adequately pulverize and mix practically all types of soil (granular to fine-
grained), but this method may also require multiple mixing passes. The second method is
central plant mixing which utilizes a rotary drum mixer, a continuous flow pug mill mixer, or
a batch-type pug mill mixer. This method works best with granular borrow materials, but the
mixed material must be transported (typically within 30 min) to the project site. Once on
site, the material is placed using a motor grader, a spreader box, or a paver. Compaction and
curing are the same for in-place and central plant mixing methods. Suitable compaction
equipment includes sheeps-foot, vibratory, and rubber-tire rollers. Curing methods include
continuous water-sprinkling and bituminous membranes.

Overall, design, construction, quality control, and ultimately performance of soil-
cement materials has room for enhancements even after decades of use and research. Many
factors influence the design and performance of soil-cement pavement layers. This report
investigates factors that influence the design and performance of soil-cement pavement
layers in Mississippi.

1.2 Objectives

The objectives of this study are focused on addressing issues that have arisen over the
past several years associated with MDOT’s soil-cement use in pavement layers. For example,
density specification of chemically stabilized soils was an issue for MDOT in the years prior
to State Study 206 initiation, which prompted the authors to assemble a soil-cement database
and conduct proctor compaction testing that used a protocol different than what MDOT
currently follows. The goal of activities such as the previous example was to enhance and
modify existing design and quality control protocols related to soil-cement.

The overall objective of this report was to provide draft design and quality control
guidance that could be incorporated and/or specified to improve performance of soil-cement
base layers. This overall objective considered laboratory mix design protocols to select
design cement contents, as well as quality control measures to enhance MDOT’s ability to
obtain the desired properties during construction. Additionally, this report’s efforts aimed to
provide information that can be used when selecting layer thicknesses during pavement
design. MDOT is in the process of adopting Mechanistic-Empirical (M-E) pavement design
procedures. Incorporating laboratory mix design, M-E pavement design, and construction
quality control procedures together is a formidable task.

1.3  Scope

This was a multi-year project, whose original scope was revised to enhance the
overall usefulness of findings. MDOT approved the revised scope of work in November of
2010, which is the scope described in the remainder of this section. The scope of work
described was undertaken to meet the project objectives presented in the previous section.

Only pavement base layers constructed with MDOT Class 9C materials were
considered. Class 9C soils were taken from north, central, and south Mississippi and tested
in conjunction with multiple portland cements. A blend of portland cement and ground
granulated blast furnace slag (GGBFS, also called slag cement) was also investigated to a



modest extent. Since cement suppliers can now deliver blended cements in a manner
allowing it to be placed in a single spread, its appeal has increased relative to past years
where multiple spreads were usually required.

In addition to a traditional literature review, an MDOT practice review was
performed where a considerable amount of information was assembled statewide that was
complimented by a survey developed and sent to all other state DOT’s related to their soil-
cement practices. This information was analyzed for overall trends and used as appropriate in
remaining State Study 206 activities.

An experimental program was undertaken as the primary component of this study that
included laboratory and field components. The experimental program investigated a variety
of behaviors including proctor compaction, strength versus time, mix design considering
strength variability, elastic modulus, wheel tracking, and thermal profiles. Strength
variability and thermal profiles were investigated in the most detail. Strength variability was
a key component for making recommended mix design changes, while thermal profile testing
was primarily investigated for its usefulness in measuring cement content as part of a quality
control program. Elastic modulus and wheel tracking were performed largely for purposes of
mechanistic-empirical (M-E) pavement design.

A key part of the experimental program was to develop and evaluate equipment
suitable for determining laboratory cement content based on unconfined compressive testing
that could also be used for quality control during construction. Additionally, economical
thermal profile equipment suitable for quality control construction activities was also
investigated in notable detail. The specimen preparation equipment was developed so
specimens could be compacted in plastic molds, thus allowing thermal profiles and
compressive strength to be measured on the same specimen.

This report made use of two graduate student thesis written during State Study 206
activities. Sullivan (2012) and Anderson (2013) contain some of the same information
presented in this report, and in some cases contain drawings, raw data, and survey sheets as
appendices that were not incorporated into this report in the interest of brevity. Terminology
was maintained between these two documents and this report to allow for the appendices in
those documents to benefit this report. Both Sullivan (2012) and Anderson (2013) are
publically available, and a link was provided in the references section that allows electronic
download of both documents.



CHAPTER 2 - LITERATURE REVIEW

2.1 Overview of Literature Review

A literature review was performed to locate information in the areas of current soil-
cement mix design procedures for stabilized base courses, soil-cement quality control,
estimation of in-situ strength of constructed soil-cement layers, thermal measurements,
strength gain with time, unconfined compressive strength, elastic modulus, and wheel
tracking. Overall, few studies were located that incorporated thermal measurement of soil-
cement mixtures into analysis or quality control, which reinforces the need for the research
performed in this project.

2.2 Cement Stabilized Base Course Design

Current soil-cement design procedures are usually based on durability and/or
unconfined compressive strength. Soil-cement mixtures are designed to optimize cement
content for satisfactory performance and economy. The following sections contain soil-
cement design procedures, criteria, and protocols developed by the Portland Cement
Association (PCA), United States Army Corps of Engineers (USACE), and state
Departments of Transportation (DOTs).

221 PCA Design Procedure

PCA developed a design procedure based on strength and durability criteria (PCA
1992). Strength of soil-cement mixtures is determined by unconfined compression tests
according to ASTM D1633, and specimens are made according to ASTM DI1632.
Specimens with height to diameter (h/d) ratio of 2.00 are recommended for a more accurate
determination of compressive strength. In most cases, specimens with h/d ratio of 1.15
(101.6 mm diameter and 116.4 mm height) are tested because these specimens make use of
common compaction equipment (standard proctor mold and hammer). With all variables
constant, specimens with 1.15 h/d ratio are reported to achieve 10 percent greater unconfined
compressive strength (o) than 2.00 h/d ratio specimens.

Durability of soil-cement mixtures is evaluated using wet-dry tests (ASTM D 559)
and freeze-thaw tests (ASTM D 560). Table 2.1 contains criteria developed by the PCA for
adequate base course performance of soil-cement mixtures which is documented by Terrel et
al. (1979) and Scullion et al. (2005). Cement contents with specimen weight loss less than
those indicated in Table 2.1 after 12 cycles of wet-dry-brushing or freeze-thaw-brushing are
considered adequate to produce a durable mixture (PCA 1992).

PCA (1992) recommends that all laboratory cement contents be expressed as a
percentage of dry soil mass. After determining the optimum cement content, the percentage
cement by dry soil mass can be converted to a percentage by volume for field construction
control. Equation 2.1 shows PCA’s calculation to convert cement content by dry soil mass to
cement content by volume. The percentage by volume calculation is based on the volume of
a 94 pound US bag of cement (PCA 1992).



Table 2.1. PCA Soil-Cement Design Criteria (Terrel et al. 1979; and Scullion et al. 2005)

Soil Classification Max Weight Loss for 12 Wet-Dry Typical o (kPa)"
AASHTO USCS or Freeze-Thaw Cycles (%) 7-day 28-day
A-1, A-2-4, GW, GC, GP, GM,

Nreas swsCspam . 14 2069 - 4137 2758 - 6895
A-4, A-5 ML, CL 10 1724 - 3447 2069 - 6205
A-6, A-7 MH, CH 7 1379 -2758 1724 -4137

1: Specimens were saturated in water prior to strength testing.

Additional Criteria noted by PCA (1992), Scullion et al. (2005), and Terrel et al. (1979):
e Max volume change should not exceed 2% of original specimen volume.
e Max water content should be less than the quantity required to saturate the specimen.
e  Compressive strength should always increase with age of specimen.

p_P

Percent Cement by Volume = 94C x100 (Eq 2.1)

Where:

D = Oven-dry density of soil-cement (Ib/ft’)
C=1+(Cy/100)

Cw = Cement content by dry soil mass (%)

94 = Unit weight of US bag of cement (Ib/ft’)

2.2.2 USACE Design Procedure
USACE (1994) developed design procedures similar to PCA with slightly different
criteria for durability and strength. USACE testing procedures are the same as PCA

procedures. Table 2.2 shows USACE criteria for soil-cement base course materials.

Table 2.2. Soil-Cement Design Criteria from USACE (1994)

Minimum o at 7 days (kPa)
Max Weight Loss for 12 Wet-Dry Flexible

Type of Soil or Freeze-Thaw Cycles (%) Pavement Rigid Pavement
Granular, PI < 10 11

Qranular, PI>10 8 5171 3447

Silt 8

Clays 6

2.2.3 DOT Design Procedures

State departments of transportation (DOTs) have independently developed design
procedures and criteria that are loosely based on the PCA and USACE procedures. Several
variations of soil-cement design are implemented by state DOTs, but design criteria are
predominantly based on unconfined compressive strength. To insure adequate durability,
DOTs have developed correlations between strength and durability for the soil type being
used in base course construction (Scullion et al. 2005). These correlations are used to specify
a minimum compressive strength to meet durability requirements, thus eliminating separate
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durability testing. DOTs have adopted compressive strength criteria for soil-cement design
largely because of the need for a more expedient testing regime. Wet-Dry and Freeze-Thaw
testing usually requires 4 to 6 weeks to conduct whereas compressive strength testing only
requires 1 to 4 weeks (Scullion et al. 2005). Table 2.3 contains compressive strength criteria,
specimen size, and curing protocols for 13 state DOTs located in the southeastern United
States of America.

Table 2.3. State DOTSs Soil-Cement Design Criteria

State’ Reference h/d ratio? Req’d o (kPa) Curing Protocol

AL ALDOT (2012) 1.15 1720 to 4140  7-day moist cure, sealed, Shr soak
AR AHTD (2003) 1.150r 1.00 2760 7-day moist cure, sealed, Shr soak
GA GDOT (2001) 1.15 2070 7-day moist cure, no soak

LA LaDOT (2006) 1.150r 1.00 1034 to 3450  7-day moist cure, no soak

MS MDOT (2004) 1.150r 1.00 2070 14-day moist cure, sealed, Shr soak
NC NCDOT (2002) 1.15 1380 7-day moist cure, Shr soak

SC SCDOT (2007) 1.000r 0.76 NA 7-day moist cure, overnight soak
TX TxDOT (2004)  1.33 1210 or 2070  7-day moist cure, no soak

VA® VDOT (2007) 1.15 NA 7 & 28-day moist cure, 4hr soak

Note: Table information was obtained from corresponding state DOT standard specifications as of May 2012.
1: FL (FDOT 2010), KY (KYTC 2012), TN (TDOT 2006), and WV (WVDQOT 2002) no longer utilize soil-cement
as a base course pavement layer.

2: In some cases, specimen h/d ratio depends on material gradation.

3: Virginia requires durability testing to be performed on soil-cement mixture. Virginia also specifies use of
ASTM D 806 to check cement content. All other states only check cement spread rates.

Use of supplementary cementitious materials (SCM’s) such as ground granulated
blast furnace slag (GGBFS) has become more popular with DOTs as a primary soil stabilizer.
As of May 2012, all states, with exception of North Carolina and South Carolina, listed in
Table 2.3 allow slag cement blends to be used as a stabilizer in soil-cement base courses.
The potential benefits and performance of slag cement blends are documented in multiple
sources (Cost and Ahlrich 2005, George 2002, George 20006).

23 Soil-Cement Quality Control

The American Concrete Institute (ACI) identifies six soil-cement quality control
factors: pulverization, cement content, moisture content, mixing uniformity, compaction, and
curing. Checking and monitoring the quality of all six factors is vital to ensure proper
construction practices according to appropriate plans and specifications to produce a well
performing soil-cement layer (ACI 2009). Only quality control measures relating to in-place
mixing are discussed in this literature review.

Pulverization is monitored by sieve analysis with the 4.75 mm sieve as the controlling
sieve size. The degree of required pulverization varies, but most specifications require
approximately 80 percent of the soil-cement mixture to pass the 4.75 mm sieve and 100
percent pass the 25.0 mm sieve. Pulverization is significantly affected by the amount of
moisture present in the soil (ACI 2009, PCA 2001).

Cement is normally placed using bulk cement spreaders. Cement content is
monitored with spot checks and overall checks. Spot checks involve: 1) placing a sheet of
canvas or metal pan of known weight and area in front of the cement spreader; 2) carefully
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picking up and weighing the canvas or pan after cement is spread on top; and 3) if necessary,
adjusting the cement spreader until the proper amount of cement is spread per unit area.
Overall checks involve closely monitoring the area or distance in which a cement truckload
of known tonnage is spread (ACI 2009, PCA 2001).

ASTM D806 and ASTM D5982 are two specifications that can be followed to
determine the cement content of soil-cement mixtures. ASTM D806 utilizes a chemical
analysis (titration method) of CaO content in hardened soil-cement samples to determine
cement content. This method requires soil-cement samples to have a significant degree of
cement hydration or hardening and is not applicable to soils containing significant amounts
of dissolved calcium oxide. ASTM D5982 uses a thermal measurement approach to estimate
cement content of freshly mixed, uncompacted soil-cement. This method measures the peak
temperature from an exothermic reaction between the calcium hydroxide in the soil-cement
mixture and a sodium acetate-glacial acetic acid solution.

Optimum moisture content (OMC) determined in the lab is used as a guide for field
control during construction. On site, moisture content is typically estimated by observation
and feel. A mixture at OMC will usually dampen the hands when squeezed into a tight cast,
and the cast can be broken into two pieces with little or no crumbling. Actual moisture
contents can be checked by nuclear or conventional methods (ACI 2009, PCA 2001).

Mixing uniformity is evaluated by visual inspection throughout the entire mixing
depth. Checking mix uniformity is performed by digging trenches or a series of holes at
regular intervals for the full depth of treatment. Uniform color and texture signifies adequate
mixing, whereas, streaked appearance suggests inadequate mixing of materials (ACI 2009,
PCA 2001).

Proper compaction equipment is dictated by the soil type, and generally soil-cement
should be compacted between 95 and 100 percent of maximum density as determined by
moisture-density tests. Compacted densities are typically checked with a nuclear density
gauge immediately after compaction operations are complete (ACI 2009).

Typical curing protocols specify a bituminous membrane to be applied to the finished
grade at a rate between 0.82 and 1.63 L/m* (USACE 1994). Prior to applying the bituminous
membrane, the finished soil-cement surface should remain moist and free of loose material.
Most specifications require 3 to 7 days of undisturbed curing before traffic or subsequent
paving layers can be placed on the soil-cement layer.

24 Traffic Opening and Early Age Properties

Teng and Fulton (1974) evaluated the performance of several soil-cement test
sections located on Mississippi state route 395. Two of these sections were constructed to
compare the effects of undisturbed curing and artificial trafficked curing of a soil-cement
base course. Both sections were constructed with AASHTO A-2 soil (MDOT Class 9C) and
were stabilized with Type I portland cement at a dosage of 6.5 percent by volume of raw soil
with a target strength of 3540 kPa (no further clarification was given for cement content
calculations using volume of raw soil). After 7 days of curing, cracks in the soil-cement
layer were mapped, and subsequently the soil-cement layer was covered with asphalt
pavement. After 2 years, each section was mapped again for cracks in the asphalt pavement.
The pavement mapping was compared to the soil-cement mapping to determine how well
each soil-cement curing method prevented reflective cracking. It was concluded both the
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undisturbed and artificially trafficked sections yielded numerous fine cracks, and for the most
part, cracks did not reflect through the asphalt pavement. Based on these results, the
traditional 7 day no-traffic curing period was recommended to be deleted from specification.

Findings of Teng and Fulton (1974) were later supported by George (2006). George
(2006) evaluated the performance of several soil-cement test sections (9C material, target
strength of 2070 kPa) on Mississippi State Route 302, and two of these sections investigated
precracking or preloading of the soil-cement layer after 1 day cure. George (2006)
concluded that precracking techniques produced numerous fine cracks which do not reflect
through the pavement surface and recommended the implementation of precracking
techniques. Benefits of precracking in soil-cement layers are well documented (Adaska and
Luhr 2004, George 2002, George 2006, Sebesta 2005).

PCA (2001) and Halsted et al. (2006) suggest soil-cement layers can be opened to
low-speed local and construction traffic provided the soil-cement mixture has sufficiently
hardened to resist marring or permanent deformation and proper curing protocols are not
impaired. Also, subsequent pavement layers can be placed soon after construction given the
soil-cement layer has hardened sufficiently to resist marring or permanent deformation.
George (2002) recommends that subsequent pavement layers be constructed no sooner than 3
days but no later than 7 days after construction of the soil-cement layer. Early placement of
subsequent pavement layers may prevent moisture loss from the soil-cement layer, thus
mitigating potential for shrinkage cracking. Early trafficking and early placement of
subsequent pavement layers offer several benefits, but it is critical to evaluate the in-situ
strength of the soil-cement layer to ensure the layer will not sustain permanent damage.

2.5  Measurement of In-Situ Strength

According to Griffin and Tingle (2009), there is no standard method for determining
the strength capacity of cement stabilized soils after construction other than field cores. Two
potential non-destructive approaches for monitoring the extent of cement hydration in soil-
cement mixtures were identified. The first approach is field measurements using devices
such as the dynamic cone penetrometer, Clegg Hammer, soil 