CE 4990/6990 - The Paving Process – Summer 2016 Abbreviated & Slightly Altered Final Presentations for Website Display

Instructor -Isaac L. Howard

Mississippi State University

University Partnersh

This hands on course initiative was financially supported by MAPA, with numerous others shown on the following slides providing, technical support, mentoring, facility access, and many other in-kind services. This course was an industry, agency, and university partnership at the most fundamental level. Thank you to everyone!

The Paving Process Technical & Logistical Supporting Groups

Individual Acknowledgements

- Everyone listed below supported this hands-on educational initiative in at least one way.
- Kyle Beckman, Mike Bogue, Dennis Bonds, Jason Brewer, Keith Clark, David Coleman, Don Conrad, Ben Cox, Jennifer Crowe, Codrin Daranga, Mike Hemsley, David Howell, Mark Holley, Jeff Johnson, Jason Keith, Kyle LaPorte, Jamie McDonald, Brandon McGarrity, Mike Miller, Nan Mitchell, Jonathan Myrick, Derrick Olive, Bob Phillips, Saunders Ramsey, Kari Babski-Reeves, Roy Robertson, Mike Tagert, Dennis Truax, Josh Walden, Amy Walker, Travis Wampler, Dan Whatley, and Taylor Wilson

South Entrance or South Gateway Project (i.e. Hail State Boulevard)

- This project served as the project for this class
- Their goal was to understand all aspects of what is required to have a transportation corridor connecting two points
 - Engineering
 - Construction
 - Materials
 - Financing
 - Public relations, public support
 - The list goes on....

<u>The Paving Process – Enrolled Students</u>

Name	Classification	Hometown
Brad Hansen	Graduate	Long Beach, MS
Robert Moore	Graduate	Tupelo, MS
Carl Pittman	Senior	Helena, AR
Jayme Williams	Senior	Carrollton, MS
Corbin Coker	Senior	Petal, MS
Jonathan Buckley	Senior	Brookhaven, MS
Joseph Arthur	Senior	Hernando, MS
Chancedy Pulliam	Senior	Houston, MS
Westin Graves	Junior	Jackson, MS

Introduction & Background

Presenter: Carl Pittman

Undergrad Research Assistant for CMRC Undergrad Civil Engineering Student Mississippi State University

MSU South Entrance

- 3.5 miles long
- 1 bridge
- 2 box bridges

- 3 box culverts
- Primary Contractor- Eutaw
- \$18 million total budget

Approximate Timeline

- 2006: Initial Idea
 - Memorandum of Understanding signed in April
- 2007-2010: Environmental study and design
- 2010-2015: Approving drawings and acquiring funds
- Fall 2015: Bid accepted
- Feb. 1st 2016: Notice to proceed issued to Eutaw
- Fall 2017: Estimated completion

Project Management

Project Management

Entities Involved

- MSU
- MDOT
- FHWA
- OSHA
- Neel-Schaffer
- Burns Cooley Dennis, Inc.
- Oktibbeha County
- Eutaw Construction Co., Inc.
- MMC Materials, Inc.
- APAC Mississippi, Inc.
- Hunt Refining Co.
- Holcim US, Inc.
- Corps of Engineers
- Volkert Inc.

- Riverside Traffic Systems
- Traffic Maintenance Service
- Mississippi Paving and Construction, Inc.
- A-1 Sealing, Inc.
- Simmons Erosion Control
- Atwood Fence Co. LLC
- Stewart Environmental Construction, Inc.
- Sunbelt Sealing, Inc.
- Columbus Fence Co. LLC
- Eubank Construction Co., Inc.
- Phillips Contracting Co., Inc.

Financing and How it Affects Those Involved From the Owner to the Observer

Presenter: Corbin Coker S.M. ASCE

President MSU ASCE Student Chapter

Finances

The Effect it has on Everyone Involved

Where the Financing comes from FHWA/USDOT is one large source

Where the Money goes

Road Site Development-3.08%

Earth Works and its financial impact-19.87%

Fencing and Temporary Erosion Control-4.39%

Bridge and Culverts-8.27%

Utilities-9.02%

Drainage-5.34%

Subbase and Asphalt-18.43%

Temporary Traffic Items-0.08%

Signage, Striping, and Marking of Roadway-0.86%

23

Landscaping 0.93%

ADD OPTIONS

- Lime Stabilization-1.54%
- Traffic lighting-0.53%
- Road Side Barriers-0.52%
- Landscape Irrigation system-0.03%

Presenter: Chancedy Pulliam

Civil and Environmental Engineering Student Mississippi State University

Safety & Practices

- Construction Safety
 - PPE
 - People
 - Training
 - Equipment
 - E-MOD
- Construction Practices
 - Eubank pipeline replacement
 - Phillips Bridge Design

- Each year 20,000 workers are injured in road construction work zones
- Top Injuries throughout the US
 - Contact with equipment
 - Slips/Falls
 - Overexertion
 - Transportation incidents
 - Exposure to harmful substances

- Fatalities in road construction typically account for 1.5%-3% of all workplace fatalities annually
- 2014 Mississippi only reported 8 fatalities occurring during road construction work and zoning.

Safety Practices

• PPE (Personal Protective Equipment)

- Three key factors
 - People
 - PPE, Safety meetings, 3 points of contact, and alertness
 - Training
 - OSHA training course, First Aid and CPR Training
 - Environment
 - Animals, Heat Exhaustion, and Prevention Methods

- Insurance Cost
 - E-MOD (Experience Modification Ranking)
 - E-MOD below 1.0
 - E-MOD's effect on construction contracts
- Equipment Safety
 - Proper Equipment training
 - Equipment maintenance
 - Worker and equipment signals

Equipment Signals

Construction Practices

North End

South End

Construction Practices

- Removal of current piping system
- Why PVC?
- Recycling Materials?

- Just Remove the PIPES?
 - Sewage
 - Bypass Pumps

- PVC pipe installation process
 - Excavator
 - Grade
 - Numbering
- Rocks instead of soil

• As Future civil engineers how do we plan for the unexpected?

Site Design

Presenter: Jonathan Buckley

Civil and Environmental Engineering Student Civil and Environmental Engineering Dept. Mississippi State University

Master Plan

- Four lane boulevard from Blackjack to Poorhouse road.
- Bike/pedestrian path along the entire route.
- Funding
- Survey of entire proposed project area

Design Issues

- Funding
- South Farm
- Material supplier limitations

Design

- Began approximately 5 years from the initial memorandum of understanding.
- Includes bridges, culverts, asphalt, and alignment.
- After environmental documents are approved, the channel is investigated to determine how the bridge bents will be arranged.

Environmental Document

- Three classes of environmental action
 - CE, example: Overlay or sidewalk.
 - Environmental assessment (FONSI)
 - EIS-(ROD), example: Actions that negatively impact environment that cannot be mitigated.
- The environmental study ensures no negative impacts to:
 - Native American religious sites, burial grounds, or artifacts
 - Noise
 - Endangered Species

ROW Plans

- Preliminary plans are set at 30% design completion.
- Field review is at 60% design completion

Field Review

- Right of ways are defined, appraised, and acquired.
- Right of ways can be sold back to the public with last owner having the first opportunity.
- Utility agreements are approved and utilities relocated.

Final Design Phases

• Soil profile

performed at 30% design.

- Office review
 - Performed at 100% design.
- Final plans are sent to contractors for bid development.
- Bid letting and awarding.

Earthwork Planning and Procedure

Presenter: James "Jayme" Williams

Research Assistant for CAVS Civil Engineering Bachelor's Degree Student Mississippi State University

Overview

- Borings/Subsurface Exploration
- Construction of Geotechnical Structures

Borings/Subsurface Conditions

- Borings are taken at points of interest
- Information from the borings are used to determine soil profiles for design
- Additional information was required for the bridge's foundation design

Subsurface Conditions

MSU South Entrance Boring Plan

• Original borings were taken at 100' intervals in cut sections and 200' intervals in fill

Indicated high volume change (HVC) soils

- After construction began additional borings were required
 - New plan used 50' intervals and indicated less
 HVC material

Soil Profile 390 380 370 1-7-G 04 VER: 4 VE.=LA.G A -7-6(22) REDUSH BROWNS C62:4 V.C.: 09.7 360 RENORAL DESCUR. A - 6 (8) C 6 R = 5 (ER) M.C. 1 37.5 DARK RED SANJO 350 (S) 2-A A-4(3) CL A -7-6 (25) CL A7-6(22) CH 052-5 CGR - 3 V.C. - 91-4 LIGHT GRAY (WFRY) CER . 7 CH V.C.= 12.0 CBR+4 V.C.: 17.2 340 V.C. = 69.7 EROUND GRAY COAY REDDISH BROWN CLAY LIGHT BEALAN 330 320 0°.88 87.00 88×00 91.00 8*⁰ 05×00 and and and 98,00

Test Pile

Finished Grade

:T: PIP	IREQ	D.			20' -	18″	AL:T	PIPE:	REQUE	140 -	48"†•PI	PE·RE(¥ D		DH(1)	/E-W-A	.¥…K∙	H	Q-D
1. REQ'D.					2-1.8		1. RE	0'D.		SKF₩	2ذR	?TṫF₩D.			₩=16	5			
363 36					11.5	F-1	1358	95		2-48"	- FFI=1	RFO'D			48′-	18″-/	£ĿŦ-;	PIPE	REQ
305750		+				<u> </u>	367	11				7:70	,	+	40'-	18″/	ALT.	PIPE	REQ
001.04					0.0							1:30							
G REQ D.		· • · · · · · · · · · · · ·		{	101-10	<u> +</u> + <u>+</u>	UG RE	Q D.::		D. S. F	; L; E34	4, 10			STA	141	100 F		
										D. A. =	25: AC::				16/	1.8″	AÎ T	PTPE	REA F
	\sim	· · · · · · · · · · · · · · · · · · ·		¦	:::3/::	UNDE	RCU:	T:::RE	Q'D.::				:		G	ж	- 1F)F-		
					-132	2+50	-134	+50							2710)		Q. L.	
		····· >		/			· · · · · ·							÷		F. a- L. a- i	-354,	43	
		÷	· · · ·	/		÷	·····					· · · ; · · · · · · · ·		÷	D. S.	F. L.	353.	89	/
			/	<u>``</u>			F	NISH.	GRADE	Į					DETC	H-P-I	IG RF	Q' D.	<
		//	/ * /	X	. /					7									· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·	/		2	ġ						<u></u>	:	ļ			,	/	
	_				~												· · ·		
																	/		
		D.S.		357,	11 —	\sim	.		FXISTING	¦ 			· - · · · · · · · · · · · · · · · · · ·			·	<u> </u>		7
		D.S. U.S.		357. 358.	11 — 95	\searrow			EXISTING			D.S.	F., L., =	353,	89	\sim			77
		D.S. U.S.		357. 358.	11 — 95	\sim			EXISTING Ground			D.S. U.S.		353. 354.	89: 43	X			///
		D.S. U.S.		357. 358.	11 95				EXISTING GROUND			D.S. U.S.		353, 354,	89: 43	X			/_/
		D.S. U.S.		357. 358.	11				EXISTING GROUND			D.S. U.S.		353. 354.	89 43	\times		2	/_/
		D.S. U.S.		357. 358.	11							D.S. U.S.	F., L., =	353, 354,	89	×		<u>/</u>	/_/
		D.S. U.S.		357. 358.	11 95			<	EXISTING GROUND			D.S. U.S.		353. 354.	89 43	~			
		D.S. U.S.		357. 358.	95				EXISTING GROUND 105 + 382 105 + 382			D.S. U.S.		353, 354,	89:	×			
		0.S. U.S.		35:7. 35:8:	11 95				EXISTING GROUND 105 + 361 105 + 361			D.S. U.S.		353. 354.	89	~			
		D.S. U.S.		357. 358.	95							D.S. U.S.	47.50	353, 354,	89	><			7
		D.S. U.S. STA	F.L= F.L=	357. 358.	11 95		3:1	DITCI	EXISTING GROUND GROUND GROUND GRADE RT			D.S. U.S.	347.50	353. 354.	89	8+00	RT.	2	<u>7</u>
		D,S, U.S. STA. TYPF	F.L= F.L= 1.35+	357; 358; 00:L	11 95 T BASI	N	3:1	DITCH	EXISTING GROUND GROUND GROUND GRADE RT			D.S. U.S.	347.50	353. 354. 	89:	8+00 1 SII	RT. T. BA	SIN	<u>77</u>
		D.S. U.S. STA TYPE	1.35+	357. 358. 00 L SIL T	11 95. T. BASI	IN.	3:1	DITCH	EXISTING GROUND GROUND GROUND GRADE RT	7.0		D.S. U.S.	347.50	353. 354. 	89:	8+ØØ SIL 8. нт.	RT. T. BA	SIN:	7 5 P
		D,S, U.S. STA TYPE DAM I	1:35+ 	357. 358. 90 L SIL T HT:	11 9.5 BASI (40.)	N * 4)	3:1	DITCH	EXISTING GROUND GROUND GRADE RT F.L.=344 F.L.=347	7.0		D.S. U.S.	347.50	353. 354. 	89:	8+00 SIL & HT:	RT. 	SIN. x·3)	7

Material Supply

• Earthen material can be provided by the site itself or hauled in from a borrow pit.

- Initial estimates required 17,000 truck loads.

 For this project the contractor was required to deal with county about the damage hauling will cause.

Construction

- Geotechnical structures used in roadways primarily included earthen structures and bridge foundations.
- Construction of the roadbed and embankments is completed using cuts and fills
- Bridge foundation construction typically relies on piles

Cut and Fill

Earthwork Quantities

Pay Item No.	Description	Quantity, yd ³
203-EX017	Borrow Excavation, AH, FME, Class B9	88384
203-EX035	Borrow Excavation, AH, FME, Class B9-6	51975
203-A003	Unclassified Excavation, FM, AH	71984
203-G003	Excess Excavation, FM, AH	141624
203-H003	Surplus Excavation	78301
206-A001	Structure Excavation	4111
206-B001	Select Material for undercuts (Contractor Furnished)	544

Removal of HVC Material, Placement, and Compaction

Erosion & Sediment Control

Presenter: Robert "Drew" Moore

Research Assistant for CMRC Civil Engineering Master's Degree Student Mississippi State University

Erosion & Sediment Control for South Entrance Project

- Roughly \$1 million of overall bid – including silt fencing
- Monitored daily by MDOT
- Maintained by EUTAW
- Subcontractor:
 - Simmons Erosion Control, Inc.

Project's Site Erosion and Sediment Plan

What is Erosion?

• The removal of land surface (soil and rock) by erosive forces.

What is Sediment?

• Land surfaces that are removed by the erosive forces.

Factors that Influence Erosion

Climate

- Precipitation, wind, and frost

- Soil
 - Structure, permeability, and soil gradation
- Topography
 - Steepness, length, and configuration
- Groundcover

Erosion and Sediment Control

Erosion Control

- First line of defense. "If there is no erosion, there can be no sediment."
- Easy to Install
- Vegetative
- Surface Cover

Sediment Control:

- Subordinate to erosion control practices; second line of defense.
- Structural
- Perimeter Controls

Erosion Control Common Practices

- Preserving vegetation
- Hydroseeding
- Mulching
- Erosion control blankets
- Soil stabilizers
- Soil Tracking
- Other techniques.

Sediment Control Common Practices

- Silt fences
- Wattles
- Rock berms
- Sediment Basins
- Other techniques

Erosion & Sediment Control (MDOT)₍₂₎

Minor/No Deficiencies

 Minor Best Management Practice (BMP) device maintenance

Deficiencies

- Loss of Sediment from the project
- Widespread BMP failure/ maintenance

Major Deficiencies

 Loss in Sediment into Waters of the US and/or wetland

- After the second month of "Deficiencies" a warning letter is sent to contractor.
- A "Major Deficiency" or a 3rd month of "Deficiencies" in a row, the contractor is given 7 days to remediate the project site before construction is halted and reimbursement is withheld.

Impact of Weather on Erosion Control

- Project site does not shut down.
 - MDOT and Contractor inspect the sediment control parameters in use.
- Preventative actions often taken on projects.
 - Soil tracking, emptying of sediment basins, avoid causing damage to existing ground cover.
- Rainy day \neq Day Off
Erosion & Sediment Control Practices On-Site

Erosion & Sediment Control Practices On-Site Cont.

MSU South Entrance

Presenter: James Joseph Arthur

Civil and Environmental Engineering Dept. Mississippi State University

Site Map

Bridge Piles

- 35' and 40' long
- 4 rows
- 51 total
- Battered

Battered Piles

Battered Piles Cont.

Encasing Piles

- Typical Type AA Concrete
 - Maximum W/C
 - 0.45
 - Specified Compressive Strength
 - 4,000 psi
 - Maximum Permitted Slump
 - 3 inches
 - Nominal Air Content
 - 4.5%
 - Maximum Temperature
 - 90° F

MDOT S.P. No. 907-804-16

- Allowed for the use of
 - Fly Ash Type F
 - Structural Fibers
 - High Range Water Reducer
- Increased slump allowable to 8 inches
- Increased maximum allowable temperature to 95° F

Concrete Delivered

- Added water reducer, structural fibers, and ice
- Slump = 7 inches
- Temp = 90.5°F
- Air = 4%
- Unit Weight = 142.2 lb/ft³

Encased Piles

Capped Piles

Bridge Construction (7/28/16)

Future Bridge Construction

- Beam Placement
- Diaphragm Construction
- Bridge Deck Construction

Culvert Construction

Presenter: Bradley Hansen E.I.

Graduate Research Assistant Civil and Environmental Engineering Dept. Mississippi State University

Summary

- 3 box culverts
- 2 box bridge culverts
- Only 2 culverts were observed during construction
 - Box bridge culvert
 - 14' x 8'
 - Double barrel culvert
 - Two 10' x 6' boxes next to each other
 - Both culverts had 3:1 sloped wing walls

Box Bridge Culvert

Stilts for the roof

Mortar Patching

 For all the holes or seams in concrete a combination of cement, sand, and water was used. Also called Mortar.

Formwork for the Wing Wall

1 Cubic Yard Bucket

- The 1 cubic yard bucket is filled up and then swung over to the formwork by a track hoe.
- Eutaw workers directed the bucket over the formwork and then pushed down the lever to release the concrete into the form.

Pouring of Wing Wall

Vibrating of Concrete

Finishing of wing wall

- The finishing occurred after the placement and vibration of the concrete.
- The finishing and curing must be done correctly or the concrete could become deficient.

Drainage Issues

Finished Side

- One completed side with wing walls
- After the box bridge culvert is completed:
 - Removal of Dirt Road
 - Redirection of stream to original direction through box bridge culvert

Completed Box Culvert

Double Barrel Culvert

- Construction techniques are the same as the box bridge culvert
- Only real difference in culverts is wall thickness and size
- Designed on 100 year storm
- Also large enough to allow cattle to walk through

Challenge of Double Barrel Wall

- The steel for the walls is packed together tightly
- The tightness of the steel matrix makes stiffer concrete harder to place and vibrate

Completed Double Barrel

Concrete Quality Control & Quality Assurance

Presenter: Bradley Hansen E.I.

Graduate Research Assistant Civil and Environmental Engineering Dept. Mississippi State University

QC VS. QA

- QC is completed by contractor
 Burns Cooley Dennis, Inc.
- QA is completed by MDOT
- By MDOT's Standards need 3 QA tests for every 10 QC tests
 - Most states only require 1 QA for every 10 QC

Sampling (MDOT)_(4,5)

- Contractor specifies amount of yardage for each mixture for the day
- Then the frequency of sampling is based off of Table 4 Section 804 from the MDOT Red Book
- The sampling is done randomly
- The Location of sampling is also random

Portland Cement Concrete				
Control Requirement		Frequency	AASHTO/ASTM Designation	
A. PLANT AND TRUCKS 1. Mixer Blades		Monthly	and that SPC	
2.	Scales a. Tared	Daily		
	b. Calibrate	Every 6 months		
3.	c. Check Calibration Gauges & Meters - Plant & Truck	vveekiy		
	a. Calibrate	Every 6 months		
4.	Admixture Dispenser	Weeky		
	a. Calibrate b. Check Operation & Calibration	Every 6 months Daily		
B.	AGGREGATES		T 2	
2	Fine Addregate		14	
-	a. Gradation / FM	250 yd ^a Concrete	T 27	
	b. Moisture	Check Meter Against Test Results Weekly	T 255	
	c. Specific Gravity / Absorption	2500 yd ^a Concrete	T 84	
3.	Coarse Aggregates	250 und Companyin	T 27	
	a. Gradation / FM	An	T 255	
	D. Moisture	to control production	1 200	
	 c. Specific Gravity / Absorption 	2500 yd ^a Concrete	T 85	
C. PLASTIC CONCRETE			100000000000000000000000000000000000000	
1.	Sampling		T 141	
2.	Air Content	First load then one per 50 yda	T 152 or T 196	
3.	Slump	First load then one per 50 yda	T 119	
4.	Compressive Strength	One set (two cylinders) for 0-100 yd ^a inclusive and one set for each additional 100 yd ^a or fraction thereof for each class concrete delivered and placed on a calendar day from a single supplier. A test shall be the average of two cylinders.	T 22, T 23, T 231	
5.	Yield	Each 400 yda	T 121	
6.	Temperature	With each sample	C 1064	

TABLE 4 CONTRACTOR'S MINIMUM REQUIREMENTS FOR QUALITY CONTROL

Quality Control Sampling

QC/QA tests

Table 1		
AASHTO: T 2	Sampling Aggregates	
AASHTO: T 19	Bulk Density ("Unit Weight") and Voids in Aggregates	
AASHTO: T 22	Compressive Strength of Cylindrical Concrete Specimens	
AASHTO: T 23	Making and Curing Concrete Test Specimens in the Field	
AASHTO: T 27	Sieve Analysis of Fine and Coarse Aggregates	
AASHTO: T 84	Specific Gravity and Absorption of Fine Aggregate	
AASHTO: T 85	Specific Gravity and Absorption of Coarse Aggregate	
AASHTO: T 119	Slump of Hydraulic Cement Concrete	
AASHTO: T 121	Mass per Cubic Meter (Cubic Foot), Yield, and Air Content (Gravimetric) of Concrete	
AASHTO: T 126	Making and Curing Concrete Test Specimens in the Laboratory	
AASHTO: T 141	Sampling Freshly Mixed Concrete	
AASHTO: T 152	Air Content of Freshly Mixed Concrete by Pressure Method *	
AASHTO: T 196	Air Content of Freshly Mixed Concrete by the Volumetric Method *	
AASHTO: T 231	Capping Cylindrical Concrete Specimens	
AASHTO: T 248	Reducing Field Samples of Aggregate to Testing Size	
AASHTO: T 255	Total Evaporable Moisture Content of Aggregate by Drying	
ASTM: C 1064	Temperature of Freshly Mixed Portland Cement Concrete	
QC/QA Equipment

Possible additions to QC/QA

- Paste cylinder compressive strength and setting time
- Potential monitoring throughout placement and early hours after placement
- Long term durability tests

Asphalt Production and Quality Control

Presenter: Westin Graves

Undergraduate Research Assistant for CRMC Civil Engineering Student Mississippi State University

Overview

- Performance Grading System
- Hunt Refining
- APAC Mississippi
- Quality Control

What is Asphalt?

- Comes mostly from fractional distillation
- Comes from the bottom of the barrel of crude oil
- Two main types of Crude oil
 - Sweet crude (Less than 2% Sulfur)
 - Sour crude (Greater than 2% Sulfur)
- Asphalt binder is the most expensive single part of the mix

Asphalt Grading

- Beginning in the 1970s, asphalts were specified as viscosity grades
 - Not directly related to its performance throughout the anticipated life
 - Examples are: AC-20 and AC-30
- Performance Grading System (PG)
 - A new asphalt specification for selecting binder for pavement performance
 - Rutting, fatigue cracking, and thermal cracking
 - Standard notation: PG XX-YY or PG 67-22 for example

Determining PG grades

- Rotational Viscometer
 - Test that ensures that the asphalt can be pumped off the truck
- Dynamic Shear Rheometer (DSR)
 - Determines the measurement of the deformation resistance of asphalt binders
 - Used to grade the maximum temperature of asphalt binders
- Bending Beam Rheometer (BBR)
 - Test method that provides a means for measuring the flexural creep stiffness
 - Determines the pass or fail value for the minimum temperature

Asphalt Binder Testing: DSR and BBR

Where is the Asphalt Coming from?

Hunt Refining Co.

- Supplying the asphalt binder for project site
 - PG 67-22
 - Asphalt contents 5.36%
 (9.5mm mix) and 3.80%
 (19mm mix)

APAC Mississippi, Inc.

- Producing the asphalt mix to the South Entrance Project
- Two lifts
 - ST 9.5mm and ST 19mm
- Aggregates being used
 - $\frac{3}{4}$ " and $\frac{1}{2}$ " Crushed Gravel
 - #67 and #89 Limestone
 - Coarse Sand
 - Reclaimed Asphalt Pavement (RAP)
 - Hydrated Lime

MSU South Entrance Project

- 3.4 million dollars of roughly 18.2 million overall
- Planned placing August 2016
- About 3.5 miles long
- 28,000 tons of asphalt

Pay Factors and Quality Control

- Asphalt Content
 - Troxler Asphalt Content Gauge
- Density
 - Bulk Specific Gravity (AASHTO T166)
 - Nuclear Gauge
- Gradation
 - MT-31
 - Aggregate Wash
 - Sieve Test

Quality Control Testing

Conclusion

- Objectives Learned:
 - Size and scale of transportation construction
 - Competition aspects
 - Communication and people skills

References

- 1. Erosion Prevention and Sediment Contorl. (n.d.). Retrieved July 01, 2016, from <u>http://rvcog.org/print.asp?pg=NR_EPSC</u>
- 2. MDOT. "Project Development for Local Public Agencies -Sp.mdot.ms.gov." N.p., 2013. Web. 1 July 2016.
- 3. Material Received on-site and off-site
- Mississippi Department of Transportation. (2004).
 "Mississippi standard Specifications for Road and Bridge Construction". Jackson, MS: Mississippi Department of Transportation.
- Mississippi Department of Transportation. (2016).
 "Mississippi Department of Transportation Concrete Field Manual". Jackson, MS: Mississippi Department of Transportation, Materials Division.

Questions?

